

Software-Enabled Solutions for Human-on-the-Loop Autonomous Systems

Rebekka Wohlrab

Challenges of human-machine collaboration

- Humans and machines speak different languages
- Complexity of the problem space with many relevant qualities (safety, security, performance, cost, reliability, ...)
- Uncertainty
- Trust
- ..

This Photo by Unknown Author is licensed under CC BY-NC-NI

Baraglia, J., Cakmak, M., Nagai, Y., Rao, R. P., & Asada, M. (2017). Efficient human-robot collaboration: when should a robot take initiative?. The International Journal of Robotics Research, 36(5-7), 563-579.

Xiong, W., Fan, H., Ma, L., & Wang, C. (2022). Challenges of human—machine collaboration in risky decision-making. *Frontiers of Engineering Management*, 9(1), 89-103.

Human-on-the-loop autonomous systems

Human-on-the-loop autonomous systems

Monitoring [4]

Tradeoff Explainability [1]

[1] Wohlrab, R., Cámara, J., Garlan, D., & Schmerl, B. (2023). Explaining quality attribute tradeoffs in automated planning for self-adaptive systems. Journal of Systems and Software.

[2] Wohlrab, R., & Garlan, D. (2022). A negotiation support system for defining utility functions for multi-stakeholder self-adaptive systems. *Requirements Engineering*.

[3] Wohlrab, R., Meira-Góes, R., & Vierhauser, M. (2022). Run-time adaptation of quality attributes for automated planning. In *Proceedings of the 17th Symposium on Software Engineering for Adaptive and Self-Managing Systems* (SEAMS).

[4] Vierhauser, M., Wohlrab, R., Stadler, M., & Cleland-Huang, J. (2023). AMon: A domain-specific language and framework for adaptive monitoring of Cyber–Physical Systems. *Journal of Systems and Software*.

Wohlrab, R., Cámara, J., Garlan, D., & Schmerl, B. (2023). Explaining quality attribute tradeoffs in automated planning for self-adaptive systems. Journal of Systems and Software, 198, 111538.

How to select a plan?

- Using a planner
- It needs an optimization function
- Need to indicate weights/priorities for different objectives
 - Safety: rather unimportant (0.1)
 - Privacy: rather unimportant (0.1)
 - Travel time: very important (0.8)

utility(plan) = 0.8·utility_travel_time(plan)+0.1·utility_safety(plan) +0.1·utility_privacy(plan)

- What should those weights/priorities be?
- How do they impact the generated plans?

Wohlrab, R., Cámara, J., Garlan, D., & Schmerl, B. (2023). Explaining quality attribute tradeoffs in automated planning for self-adaptive systems. Journal of Systems and Software, 198, 111538.

Markov Decision Process

mdp

formula goal = rLoc=6;

label "end" = rLoc=6 & !computeGo & barrier;

module module_1

rLoc : [0..6] init 1;

// moveTo

[moveTo_LP_L2_RP_] rLoc=1 -> 0.0:(rLoc'=1) + 1.0:(rLoc'=2); [moveTo_LP_L4_RP_] rLoc=2 -> 0.2:(rLoc'=2) + 0.8:(rLoc'=4); //...

endmodule

rewards "travelTime"

[moveTo_LP_L2_RP_] rSpeed=0 & rLoc=1 : 1.0;

[moveTo_LP_L4_RP_] rSpeed=1 & rLoc=2 : 0.8;

endrewards

 $multi(\mathcal{R}^{c}_{\min}[C], \mathcal{P}_{\geq 1}[F \textcircled{o} \land G(\neg \textcircled{o})], \ \mathcal{R}^{c_{t}}_{\leq 5}[C])$

Generating data...

priority of travel time	priority of safety	priority of privacy	cost of travel time	cost of safety	cost of privacy	number of steps	decision at Location L1	decision at Location L2	decision at Location L3	
0	0	1	50	100	10	25	L2	L4		
0.1	0	0.9	50	100	10	25	L2	L4		•••
0.2	0	0.8	50	100	10	25	L2	L4		•••
0.3	0	0.7	45	96	20	22	L3		L6	•••

Wohlrab, R., Cámara, J., Garlan, D., & Schmerl, B. (2023). Explaining quality attribute tradeoffs in automated planning for self-adaptive systems. Journal of Systems and Software.

Principal Component Analysis (PCA)

WALLENBERG AI, AUTONOMOUS SYSTEMS AND SOFTWARE PROGRAM

Generating data...

priority of travel time	priority of safety	priority of privacy	cost of travel time	cost of safety	cost of privacy	number of steps	decision at Location L1	decision at Location L2	decision at Location L3	
0	0	1	50	100	10	25	L2	L4		
0.1	0	0.9	50	100	10	25	L2	L4		•••
0.2	0	0.8	50	100	10	25	L2	L4		•••
0.3	0	0.7	45	96	20	22	L3		L6	•••

Wohlrab, R., Cámara, J., Garlan, D., & Schmerl, B. (2023). Explaining quality attribute tradeoffs in automated planning for self-adaptive systems. Journal of Systems and Software.

Wohlrab, R., Cámara, J., Garlan, D., & Schmerl, B. (2023). Explaining quality attribute tradeoffs in automated planning for self-adaptive systems. Journal of Systems and Software.

Other application domains for tradeoff explanations

- Software architecture
- Smart manufacturing
- Cloud-based systems design (thesis with Volvo Cars)

Cámara, J., Wohlrab, R., Garlan, D., & Schmerl, B. (2023). ExTrA: Explaining architectural design tradeoff spaces via dimensionality reduction. Journal of Systems and Software, 198, 111578.

Cámara, J., Wohlrab, R., Garlan, D., & Schmerl, B. (2023). Focusing on What Matters: Explaining Quality Tradeoffs in Software-Intensive Systems via Dimensionality Reduction. *IEEE Software*.

Garlan, D., Schmerl, B., Wohlrab, R. & Cámara, J. (2024). Challenges in Creating Effective Automated Design Environments: an experience report from the domain of generative manufacturing. In Designing.

15

Wohlrab, R., Cámara, J., Garlan, D., & Schmerl, B. (2023). Explaining quality attribute tradeoffs in automated planning for self-adaptive systems. Journal of Systems and Software, 198, 111538.

Self-adaptive systems

• A self-adaptive system is a system that can handle changes and uncertainties in its environment, the system itself, and its goals autonomously.

Weyns, D. (2020). An introduction to self-adaptive systems: A contemporary software engineering perspective. John Wiley & Sons. Kephart, J. O., & Chess, D. M. (2003). The vision of autonomic computing. *Computer*, *36*(1), 41-50.

Cleland-Huang, J., Agrawal, A., Vierhauser, M., Murphy, M., & Prieto, M. (2022). Extending MAPE-K to support human-machine teaming. In SEAMS (pp. 120-131).

Architecture: Elicitation and Explanation Framework

Wohlrab, R., Vierhauser, M. & Nilsson, E. (2024). What Impact do my Preferences Have? A Framework for Explanation-Based Elicitation of Quality Objectives for Robotic Mission Planning. In 30th International Working Conference on Requirement Engineering: Foundation for Software Quality.

Participants

Part.	Occupation	Experience with technical jects
1	Engineering manager	3-5 yrs.
2	Graduating software development student	1-2 yrs.
3	Graduating software engineering student	1-2 yrs.
4	Software developer	6+ yrs.
5	Backend developer	3-5 yrs.
6	Cloud engineer/architect	6+ yrs.
7	UX-design student	0 yrs.
8	Consultant manager	6+ yrs.
9	Software architect	6+ yrs.
10	Product owner	6+ yrs.

Wohlrab, R., Vierhauser, M. & Nilsson, E. (2024). What Impact do my Preferences Have? A Framework for Explanation-Based Elicitation of Quality Objectives for Robotic Mission Planning. In 30th International Working Conference on Requirement Engineering: Foundation for Software Quality.

Method for Utility Function Definition

 Based on the Analytic Hierarchy Process (AHP) – pairwise comparison of quality attributes

 $U(m) = 0.8 \cdot \text{safety}(m) + 0.1 \cdot \text{duration}(m) + 0.1 \cdot \text{privacy}(m)$

Saaty, R.: The analytic hierarchy process—what it is and how it is used. Mathematical Modelling 9(3), 161–176 (1987) Wohlrab, R., & Garlan, D. (2023). A negotiation support system for defining utility functions for multi-stakeholder self-adaptive systems. *Requirements Engineering*, 28(1), 3-22.

Create an AHP matrix

• Pairwise comparison of qualities

- Extremely preferred 9
 Very strongly preferred 7
 Strongly preferred 5
 Moderately preferred 3
 Equally preferred 1
- Creation of a reciprocal matrix A
- Normalized principal eigenvector of the matrix A represents the relative priorities of the qualities

Principal eigenvalue: $\lambda_{max} \approx 3.01$

Corresponding normalized eigenvector: (0.799, 0.105, 0.096)

Travel time Safety Privacy

Evaluation

ShiftLeft – a WASP NEST project

27

