=
—
=

i

Configuration of Dependable Edge Computing Platforms
for Virtualized Critical Control Applications

Paul Pop
2023-10-05

A + Q 56
Flx+dn)= 2“") —0. 7T828‘l 8284

DTU Compute
Department of Applied Mathematics and Computer Science

Outline and acknowledgements

« Motivation This presentation is based on the PhD theses of
the following DTU PhD students:

e Dr. Mohammadreza Barzegaran
¢ Dr. Niklas Reusch

« Industry 4.0: IT/OT convergence
« Dependable Edge Computing
— Edge vs. Fog Computing

~ Virtualization of control The work has been done in collaboration with:

« Configuration problems e TTTech Computertechnik AG
- Mapping and scheduling of tasks o Danfoss Power Electronics A/S
— Routing and scheduling of messages
— Fault-tolerance, quality of control, The work has received funding from the European
extensibility and security Union’s Horizon 2020 research and innovation

o Configuration optimization solutions programme under the Marie Sklodowska-Curie grant
agreement No 764785: FORA—Fog Computing for

« Evaluation and use case Robotics and Industrial Automation

Motivation

Industry 4.0: Digitalization of the manufacturing and industrial sectors, with embedded sensors in virtually all product
components and manufacturing equipment, ubiquitous cyber-physical systems, and analysis of all relevant data.

Benefits (manufacturing) Digitalization of all areas
Indicative quantification of value drivers <
5
10 - 40% reduction of Productivity increase E(/G-u
maintenance costs’ by 3 - 5%° n Transportation
\alue driverg g

" Healthcare \ [Industry
20 - 50% reduction Service/ | Resource/ Y \ /
i 1 aftersales | process /
in time to market S =

30 - 50% reduction B -
Time to / KU | Poplai >
market / Asset of total machine "N Independent R

/ utilization downtime? %L —1 (onsonal ™ =
Forecasting Supply/demand | e - ¥
accuracy increased ZED N _

to 85+%° / / \ ,\
Costs for quality fotie8 45 - 55% increase of mart home = Em
reduced by 10 - 20%° productivity in technical l5 ;
c . hold professions through auto- R - _
osts for inventory holdin 4 — — aw data to the clou
decreased by 20 vt mation of knowledge work Tala focdlipprlicates Vetieles g Action bascd om s

Intra-domain sensor/actuator
communication

The automation pyramid and OT

Operations The hardware and software dedicated to detecting or causing changes
technology (OT) in physical processes through direct monitoring and/or control of
physical devices such as valves, pumps, etc.

The Automation Pyramid:
Soon to be Ancient History?

% Rigid infrastructure with 2
i i
separation between levels & \
of functionality <, D)
@ Levels connected by dedicated,
specialist networks \;é\‘b
@ Data exchange only via gateways Q@‘}
or proprietary systems &
@ Difficulties to transparantly
access data at the cyber >
pyramid (machine) level o°$

Real-Time ——
&
&

~

From the automation pyramid to distributed architectures

¢ Cyber-Physical Systems are integrated into
manufacturing, logistics, industrial processes.

¢ Production complexity moves to the Cloud:
benefits cost, energy, sharing of resources,
flexibility, adaptability.

¢ Open standards will win:
IEEE 802.1 TSN and OPC UA over TSN

— Real-Time
(TSN)

What is Cloud that comes close to the ground (edge of the network)?

Fog Computing System-level horizontal architecture that distributes resources and
services of computing, storage, control and networking anywhere

along the continuum from Cloud to Things.
Similarities with: (Dependable Real-Time) Edge Computing

Public Clouds Private Clouds

Computing and Storage Today:

1. Clouds

2. Enterprise Datacenters

3. Traditional and Embedded
Endpoints

10T requires more virtualized, scalable,
reliable, secure, real-time capable Computing
and Storage at the Edge:

Fog Computing!

Ol lGlel_lalclolelIe s

Vision: OT becomes virtualized (Control-as-a-Service)

¢ Edge Computing: An architecture where
resources of an edge server are placed at the
very edge of the Internet, near Cyber-Physical
Systems (CPSs), mobile devices, sensors, and
Industrial Internet of Things (IloT) endpoints.
Benefits: Reduced latency, bandwidth
efficiency, enhanced privacy & security.

Dependable Edge Computing: Ensuring reliable,
fault-tolerant, and secure data processing at
the edge, especially for critical applications.

Benefits: Enhanced robustness, reduced risks,
trustworthy operations.

SDN

- -
-_5 VPLC || vPLC || vPLC E el
Virtualization w @ @ @ 3
infrastructure g e
£ RT . [
Hypervisor >,
Convergent
communications
fabric

Connected /O
modules

Physical Link -
SDNflow ~ «---

Field
components

ORI Y =

FORA: Fog Computing for Robotics and Industrial Automation fora

e The FORA European Training Network
— Marie Sktodowska-Curie Action

— 15 PhD students, 5 universities, 4 countries

e DTU’s objectives in FORA: virtualization of control

— Develop methods and tools for the configuration of an
Edge Computing Platform for critical control applications

Apps
SM Cloud

Vision: open Edge Computing-
based architecture built on open
source and open standards (TSN,

(=)

Enterprise

OPC UA and 5G).
g
Manufacturing
=N =N
Control
5 - -3 g Q il,
Machine

Current closed architectures using the
. automation pyramid (Purdue model)

2
&
2y ’
£g
% ucz2 || uc3
i © Aop
£ 2 |uet ucs ollelle]f L=l
== Ve
Virtupiized Control | yachine
3
g2
S 5|configuration Resource
g . ——
2 £ management &
&3
& £ ‘& |existing standards & open source senvices
= = 3|orC A, Open Stack
Edge
Device Hypenvisor
£ —
=
5
[Computation Storage Cor

[Security & Dependabilty |/ Data analytics

WP2 Edge Computing Platform

Industry 4.0 architecture based on Dependable Edge
Computing and Deterministic Networking (TSN)

WP4 Services: Security,
Dependability, Analytics

Edge nodes: Virtualization and Security

Virtualization A combination of physical separation (multicore), hard, RT-NRT Virtual Board/
Machine based virtualization and more lightweight Linux Container based virtualization

RT-Apps RT-Apps

B G S

uestOS+Hypervisor M) or Thin Hypervisor (Wind River, Lynx,..

LXC: Linux Container

Security Decentralized model, including distributed authentication, trusted booting,
secure software management, SDN based connectivity control, OpenVPN, NFV Security...

Network convergence: IEEE Time-Sensitive Networking

Principles Integration
Multiple traffic classes share the network, supporting
applications with mixed-criticality requirements

Separation: Virtual links separate different criticalities

Standardization as IEEE TSN
A number of IEEE 802.1 standards due for release early in 2017

Synchronous (Time-Critical)

o '/Gv“" . & ™ | . SAE AS6802 clock synch
o S (IEEE 1588 compatible)
> [° | Complete | Reakiime control ey
- Ut tency B

- Safety systems

Streaming (Time-Sensitive)
+ Rate-constrained (AVB)

+ Rate-constrained (A664p7)

+ Audiohvideo

- Sensor fusion

Fog
IEEE 802.1CB ‘Seamless Redundancy

IEEE 802.1Qca Path Control and Reservation
Deterministic
Networking IEEE 802.1Qbu Frame Pre-emption

Eth Regular Traffi &5
IS
IEEE 802 1Qch Cyclic Queuing and Forwarding LEGEZLSIG(‘ ig':‘a:' raffic) _v__....---wr}&\z\’\
. standard traffic S

|EEE 802.1Qci Ingress Policing « Best effort <

‘Source: htp:/iwww.ieee802.0rg/1/pages/sn.htmi

loT Endpoints

Motivation: Example Architecture

(] Task
() Message

%N
=

(

- Engineering dependable edge-based systems for critical control is challenging:
— Architecture design, provisioning and traffic shaping mechanisms
— Placement and scheduling of tasks, routing and scheduling of messages
— Fault-tolerance, redundancy, security mechanisms
— Resource management, guaranteeing timeliness, safety, security

Edge Computing Platform Architecture

¢ The Edge Computing Platform (ECP) runs mixed-criticality applications, including control applications
— An FCP is composed of several interconnected Edge Nodes (ENs), from powerful multicore ENs to low-end ENs
— The control applications are virtualized as tasks running on the Edge Nodes (ENs) of the ECP
— Partitioning is used to isolate applications of different criticalities
e Each partition can have its own operating system (OS)
¢ The partitions running the control applications use a real-time operating system (RTOS)
Tasks

Control
tasks

oo [0 o © \]|
00 [eXe] o
) 0o o ©
Middleware
) RTOS 0s 0s N
_ Hypervisor partitions
7'(.) .'x' Multicore processor
4 Edge|
Node|
an._..}.-_:?]: --------------------------------

Example architecture of an Edge Node

Time-Sensitive Networking

¢ Set of amendments to IEEE 802.1:

— Extends Ethernet with real-time and standard Description
safety-critical capabilities

— Applied in many application areas

802.1AS-Rev Timing and Synchronization for Time-Sensitive Applications

802.1CB Frame Replication and Elimination for Reliability
¢ Consists of many sub-standards; we consider: 802.1Qbv Enhancements for Scheduled Traffic, Time Aware Shaper
— 802.1ASrev: time synchronization 802.10bu Frame Preemption
— 802.1Qbv: time-aware traffic shaper
802.1Qci Per-Stream Filtering and Policing
e ATSN network is composed of:) -
— End Systems (ES) with input and output ports ‘ ESy Wi R [ks, |
— Switches (SW) with input and output ports A /\ -~ sw \'/K 4
- Links between ES and SW PR Lo > 2 s P
| Es2 J“/V R, u'*r £Ss
\ 4 3 4
e The traffic is described by streams: > R
— Sender, receivers, data size, period physical link rotite

— Packed into Ethernet frames
— Traffic type and priorities (TT, AVB, BE)

TSN 802.1Qbv Switch Architecture

e Ingress & Egress Ports

Switching || Priority

* 8 priority queues fabric filter

* Queues can be assigned to different traffic classes
* Switching Fabric (and Priority Filter) .

map frames to priority queues

GCL
Schedule Switch

| @ | Gate Open Vector
[0,10] 10000000

* Gates control flow of traffic:
Opened/closed based on Gate-Control List (GCL)

e TSN also offers other shapers

[90,100] 00000001

Fog Node

Fog Node
actuator [actuator

Architecture model

Architecture model

¢ Set of Fog nodes connected via TSN; each Fog Node has - N ,,\/
— Multiple cores \switca%\s\wi@%évimh)
— A hypervisor and a time-triggered scheduler {ﬁm] L \[ﬂ]
¢ |solation of mixed-criticality applications

sensor [sensor {sensor

Partition tables and scheduling Example architecture model

¢ Partitions are statically scheduled using partition tables (e.g., as in PikeOS)
¢ Time-triggered scheduling is used to run the tasks, and communication is ignored (we’ll revisit this in Paper B)

01 23 45 6 7 8 9 1011121314 15 16 17 18 19 20 21 22 23 24 25

Partition slices Partition overhead

Example schedule table

+

Control applications and their performance ‘o

A Feedback control system (FCS) or control application operates and commands

a dynamical system (robots and industrial machines) using a control algorithm. -

e Can be implemented as a three-task application: sampling, control law, and actuation tasks uh "

+
Controller O
K

Control performance (QoC) A simple feedback control system

e Captures the trade-off between the accuracy and the rapidity of the controller
¢ We use a quadratic cost function (J) proposed in the literature
e QoC is calculated using the JitterTime tool, which simulates control applications

6 x10° Plant output produced by different scheduling
T T T T
non QoC-aware scheduling

5 QoC-aware scheduling ||

4 4
33 4
5
oI 4
5
§
(] 4

0

at 4

2 L 1 I L L

0 0.05 0.1 0.15 0.2 0.25 0.3
Time (s)

Scheduling effect on the control output

A. Cervin, P. Pazzaglia, M. Barzegaran, and R. Mahfouzi, “Using JitterTime to analyze transient performance in adaptive and reconfigurable
contro ems.” In Proceeding o nternational Conference on Emerging Technologies and Factory A ati

ECP configuration for QoC: tasks

Given: Application and architecture models mw
actuat (sensor
Determine: An ECP configuration: e el
* partitions * the period of control applications
* mapping of tasks to the cores e partition tables

* assignment of tasks to partitions * task schedule tables
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Corel|[23 4 1|5 6 |J2/3 6 |14 2 3| e 5
Partition Partition | | Partition |Partitio Partition artition
Example 1 2 1 2 1 —
configuration Tasksé — Partition overhead
T~
S~ —
N S~ E =
Core 2 7 | 3 10 8l 7 | 8 9 10
Partition Partition . Partition | Partition
i 3 4 i 3 i H 4

Such that:
¢ The QoC of applications is maximized and “balanced” across applications
¢ The mixed-criticality applications are isolated within partitions, and the deadlines are satisfied

17

ECP configuration for QoC: messages g

Given: Application and architecture models //m\ \
‘ ‘ E=E

Determine: An ECP configuration

Control/ realtime.
ppiication
ith criticalty level L

¢ Including the GCLs for messages

end-system i
Link 1 3 2 4 2
Example Link 2 1 6 1
configuration Lnk3 |2 2 B ! 2
Link 4 3 2 2 g 2 :

Link 5 2 2

Such that:
e The QoC of control applications is maximized
— The QoC is captured using an analytic model
¢ The deadlines for mixed-criticality applications are satisfied

18

Control-Aware Configuration Strategy

e CP model consist of a set of variables and their domains

— The variable domains are related by constraints

Application model

Architecture model

CACSS
CP solver
CP model
coc s
Domains
Constraints
i . . . Tuning snalytic QoC
e Constraint Programming (CP) is a declarative parameter Search traversal
.) Strategy: Metaheuristic
programming paradigm
o CP visits solutions that satisfy the constraints
and evaluates them using an objective function .
Best Solutions
¢ The visited solutions are evaluated using the
analytic QoC model
e For each improving solution JitterTime
calculates the accurate QoC value
19
Evaluation results
Fog Computing Platform Configuration (FCPC) has 3 variants:
1. FCPC/M—ignores mapping optimization
2. FCPC/Q—ignores the QoC optimization
3. FCPC/P—ignores the control applications’ period optimization
Test No. Total No. of Total Total No. of Q Q Q Q
cases of Control No. of | Tasks for Criticality of for for for
Cores | Applications | Tasks level of [0-4] FCPC | FCPC/M FCPC/Q FCPC/P
1 2 2 12 {1,2,2,1,6} 0,19 48% Not Feasible 60%
2 2 3 23 {3,2,5,4,9} 0,34 5% Not Feasible | Not Feasible
3 2 2 17 {2,2,4,3,6} 0,21 5% Not Feasible 33%
4 2 2 23 {2,1,7,6,7} 0,29 13% Not Feasible 13%
5 3 3 32 {1,4,8,8,11} 0,21 39% Not Feasible 55%
6 3 3 31 {2,3,9,7,10} 0,22 85% Not Feasible 50%
7 3 4 33 {4,4,8,7,12} 0,26 15% Not Feasible 10%
8 4 4 44 {4,6,11,9,14} 0,20 29% Not Feasible 72%
9 5 6 54 {7,5,14,10,18} 0,21 21% Not Feasible | Not Feasible
10 6 7 63 {6,7,16,12,22} 0,24 21% Not Feasible 46%

Q is the value of the cost function; a small value means better and well-balanced QoC for control applications

Extensibility in Edge Computing
¢ The ECP runs mixed-criticality applications; safety-critical applications require static pre-release configuration
— The vision is Industry 4.0 is to host Edge applications, which are not considered at design time
— A costly re-certification is required when the configuration is changed
— An extensible configuration is used in the ECP to realize Industrial loT
e Resources for safety critical applications are assigned at design time
e Remaining resources are allocated for hosting Eog applications at run time

Edge applications O Critical control
O applications Static
ion ti configuration
Not known at design time O E
Aperiodic, best-effort O O O O Runtime
Goal: minimize response time
° allocation O
Future control applications icati ini
PP Problem; Synthesize Edge applications use the remaining
Not known when the initial an extensible static configuration at
config. is created design time The control applications use the resources
Goal: added later without Goals: guarantee QoC, support future allocated statically at design time via the
modifying the initial config. control and accommodate Fog apps. synthesized configuration

21

Extensible ECP configuration

¢ An extensible ECP configuration is synthesized at design time and considers changes in runtime.
— The changes can be future critical applications, Edge applications or both; handled by appropriate technique put together in a
hierarchical scheduling model
— The extensible schedule accommodates a larger number of future control applications and provides a shorter response time
for Edge applications
¢ The extensible configuration uses the uniform distribution of the periodic slack in schedules to host the changes.
— The slack in the schedules is distributed uniformly at design time
— The slack is used to allocate resources for dimensioned servers to handle applications

~

—— Availability D|
6 [|—Availability D,
@ ||—Load
s
>
=
8
34
® / ;
o
=
B 3
Critical tasks Slack Fixed-priority server Periodic window Critical messages o
VA
H
Core 1
Link
0 . s
0 20 [2 10 12

6 8
lirr]e (ms) .
Extensible configuration Response time analysis

y

ECP configuration 7 e,

hili N 7 W @ g
fo r exte n Sl b | I Ity \ \ \and WCETs I \\
i) \ i > i
switch e P : (

physical link

Message
g aperiodic, characterized with
switch sizes

Given: Application and architecture models 53

A\ i i
/ Control / reaktime “ Fog application

. ./ ./ application
SN with criticality level L

Determine: An ECP configuration:

* mapping of tasks to the cores * static task schedule tables
* routes for critical control applications * dimensioning of deferrable servers
* Gate Control Lists (GCLs) * dimensioning of port windows
Core 1 -
Core 2 T
Example 70y 1 3
configuration ;1 1 2 3 1 2
Link 3 2 ! 2 IR

Such that:

e The QoC of applications is maximized and “balanced” across applications
¢ The deadlines are satisfied

¢ The extensibility of the ECP configuration is maximized

23

Extensible Configuration Optimization Strategy (ECOS)

ECOS models the problem as a CP model ECOS defines a CP formulation for the
o ¢ The CP model consists of a set of variables problem
Architecture model X . .
e Start time of frames * The CP formulation consists of a set of
Application model * End time of frames constraints
PP e Start time of jobs e Link overlapping
* Endtime of jobs * Routing
* Mapping of tasks to the cores of FNs e Isolation of frames

e Frame deadlines
e Core utilization

. . . . * Task overlapping
ECOS improves the speed of the search with a metaheuristic « Task deadlines

search traversal strategy * Precedence in applications

* The strategy uses heuristic methods for choosing variables
and assigning values to the variables

ECOSS generates a set of
optimized solutions

24

Evaluation results o

Extensible Configuration Optimization Strategy (ECOS) has been evaluated on three scenarios: O O
1. Supporting future control applications

Edge applications Critical control
. . . applications Static
2. Hosting Edge applications ot O- @ * c.,..f.gu.a..on_

. . Aperiodic, best-effort
3. Extending with upgrades ol e g
allocation
Future control applications R THERTED Edge applications use the remaining
Not known when the initial an extensible static configuration at resources at runtime
config. is created design time The control applications use the resources
Goal: added later without Goals: guarantee QoC, support future allocated statically at design time via the
modifying the initial config. control and accommodate Fog apps. synthesized configuration

TC | Total no. of | Mean util. of Percentage of RT?of Fog application 1 | RT?f Fog application 2 | RT?of Fog application 3
tasks / flows FCCAs! Supported Tasks: 16 Tasks: 21 Tasks: 35
in FCCAs' FCCAs! Flows: 15 Flows: 20 Flows: 38
ECOS [ECOS/E | ECOS ECOS/E ECOS ECOS/E ECOS ECOS/E
1 36/58 57% 100% 78% 133 3.97 2.82 5.66 473 7.43
2 37/65 55% 100% 89% 1.42 1.91 2.75 4.92 6.74 9.56
3 3020 50% 100% 96% 1.26 3.36 2.94 4.88 5.16 12.29
4 29/32 45% 100% 81% 2.17 3.27 3.64 5.65 5.18 7.34
5 33/40 44% 100% 96% 1.56 4.14 3.68 5.81 4.36 9.44
6 44/45 40% 100% 90% 1.47 2.96 3.14 4.17 4.96 5.82
7 37/35 39% 100% 83% 1.19 3.95 3.88 3.96 2.96 4.76
8 33/34 37% 100% 90% 2.18 2.93 3.14 5.84 2.84 9.64
9 25/28 31% 100% 98% 1.65 3.77 4.43 5108 2.35 4.74
10 18/21 27% 100% 82% 2.37 3.79 4.82 597 2.85 6.68
Average 100% 87% 1.6 3.4 3.5 5.2 4.2 7.7
! Future Critical Control Application ECOS/E ignores extensibility

25 2 Response time in ms.

Example cybersecurity attack: Stuxnet

® Probably targeted at the nuclear program of Iran
Used multiple zero-day vulnerabilities
® Manipulates PLCs in SCADA systems, commonly
used in safety-critical systems
o nghly sophisticated & targeted:
Only attacks industrial drives from two vendors
— Only attacks drives which spin at a certain
frequency (gas centrifuges)
— Slightly modifies frequency over period of months
to increase wear but remain stealthy

26

Remote Attestation: Idea

Given:

Set of trusted end-systems called verifiers
Set of untrusted end-systems called provers

Goal:

Validate the integrity of software on provers
Detect changes in software, e.g., because of malware

Verifier
(trusted)

Expected Prover

1. Generate \ 2. Send challenge ¢

e Problem:

— Attestation takes long time (multiple seconds)

— Can’t be interrupted: Infeasible in real-time systems
® Solution: SMART + SMARM architecture

— Memory is split into equal-sized blocks

— Only a certain block is attested each time

— The prover cannot predict which block -

malware cannot hide

Prover
(untrusted)

Memory challenge ¢

4. Send result r

13. Run attestation ——»
on memory

Remote Attestation Process

27

Architecture Model

e Industrial-inspired Edge-Computing platform
— Edge servers (data analytics, machine learning, etc.)

— Cells (control)

— Production lines (sensors and actuators)

e Edge devices are most powerful and best protected:

Verifiers are placed in the edge devices

Provers are placed in the loT endpoints

e Sensors and actuators on production lines are least protected Tine I :

Edge

“ 2 §

Cell a

iCell

28

Application Model

Critical Application 1:)\

e Critical control applications 1= 2000k
iti icati
. . . T,e;,100 T, ey, 100
— Hard real-time, periodic <Tenl0> (3 (tp) <Teslto>
— DAG with tasks and streams i 82
— Unknown task placement & stream routing Sy ()

83

< T,eq,100 > @

Edge Application 1:)|

e Edge applications
— Not real-time, but response time is important
— aperiodic (arrival time unknown)

— No data dependencies, but @si@

async communication via streams

<e1,50,0 > < e,50,0> < ey 50,0>

®* Remote attestation applications

— Consists of 3 tasks and 2 streams RA Application 1: X
— Should happen as regular as possible T = 2000 ps
D, x(t,)
oy 2

< T,v1,5 > < T,py,100 >

29

(t)

< T,v1,50 >

Example: Edge Application Optimization

[ea]
[e1, sw1]
[swy, e2]

[e2]

lea]
le1, swy]
[sw1, e2]

[e2]

0 500 ‘ ‘ 1000
Optimization = shorter worst-case response time

30

Example: RA Application Optimization

* Maximum unattested time

0 500 1000

Optimization - shorter worst-case detection time

31

ECP configuration for security

Given:

Edge Computing TSN architecture, designated verifiers & provers
Critical real-time applications
A set of dynamic edge applications

Determine:

Task mapping

Static cyclic task schedules

Stream routing & schedules (GCLs)

RA applications and deferrable servers

Such that:

Deadlines of critical real-time applications are met
Response time for edge applications is minimized
Security for RA applications is maximized

32

YV VYV VY

Evaluation

Python, CP-SAT solver from Google OR-tools
Medium-sized industrial inspired testcase
NOEXT: scheduler without optimization for
extensibility/security

EXT: scheduler with optimization

EXT significantly reduces avg. & worst-case
response time for random edge applications

EXT significantly reduces the maximum unattested
time for all provers

The benefits come at a slight increase in the
latencies of critical applications (still schedulable)

NOEXT EXT
Maximum unattested time 425 150
Worst-case edge-app response time 350 233
Average-case edge-app response time | 66,421 | 45,117
Total critical app latency 4,668 5,141
Comparison of NOEXT vs. EXT
NOEXT EXT
E1 121.75 79.75 (-34.5%)
E2 180.83 107.83 (-40.37%)
E3 215 185.17 (-13.87%)
E4 166.25 148.33 (-10.78%)
ES 161.67 134.67 (-16.7%)
E6 109.83 109 (-0.76%)
E7 101.5 65.33 (-35.64%)

Response time for randomly-appearing edge applications (E1-E7)

33

Edge-based electric drives

e Electric drives are widely used in Industry

— They produce data that carries vital information: they can be used as the data source

e Electric drives are re-engineered as ENs in an ECP

Clal

— Edge-based drives perform data analytics; avoids sending massive data with vital information

— Electric drives are developed using the FORA FCP reference architecture

— The architecture is modelled using Architecture Analysis & Design Language (AADL)

s Ep—

An electric drive in a conveyor belt
setting

Conveyor belt

FORA AADL reference architecture

(Ape] | [App) | |App| oo
Virtalized Cpntrol | . ..

¥
¥
/) Data anaytcs

Configuration
tools

N o |
N
= £
Existing standards & open sour e L 8
OPC UA, Open Stack for the Edge: &
| 8
Hypervisor and Dependable Middieware 5
Edge 5
Device - = o
] g | & | &
FE = N | 5 | &
Compusion __ Siige ___Gormincaon
WP1

FORA AADL Models

Use case architecture and model

Edge-based drives are modelled using Architecture Analysis and Design Language (AADL)
e AADL is a standard language for modelling systems using a component-oriented approach
e Edge-based drives are designed to deliver the drive punctualities and realize the vision of Industry 4.0

nnnnn

uuuuuuuuuuu

AADL model of the edge-based drive

36

A self baggage drop system

UC schematics

Research output and overall evaluation

Research KPIs
contribution Increased | Increased Reduce Reduction in Reduction Increased Shorter
safety security latency of installation, in access to time-to-market
virtualized | configuration and hardware | machine data for
critical software spending edge new industrial
control costs analytics icati
Tog Node, Hypervisors and Middleware
Clock ization for virtualization [36] v [e [7] X e | X T X
Time-triggered hypervisor [17] v 1T 7 4 | ° | &] X | x
Container ion technique [21] [X [X | X [v [[[X [4
B Y —
Time-triggered networking [16], [37] v [e [e | 7 x| X T ®
Wireless networking [38] | x 1T &] v | ° | X | X | °
TSN i imization [24] & | x [v | ® e | X I ®
Resource O ion and C i
[0 fon method [19] x x x ® ® ® 7
Routing i imi. X X X v v [v
Control virtualization method [40] 7 x 7 ® ® x x
i i imization [29] v X v [v [v
migration method [27] x x ® x ® x 7
algorithm for elastic ications [41] [J X v X [X [
Services and i

Fault recovery ism [32] v X X X 4 X X
Fault-tolerant architecture [42] v X [J [J v X X
ication method [31]] v X [J X X X
Tntrusion detection method [18] ® 7 x ® x x X
Fault detection ism in TSN [33] v X [J [J [J X X
Safety services [43] [J X [[[X X
Decomposed deep training solution [35] X X X X X v [J
Data analytics solution [34] x x x x x 7 ®

The public prototypes are at: http://www.fora-etn.eu/people/ and https://github.com/nreusch/TSNConf

Summary

e We proposed several approaches to the design time ECP configuration optimization for mixed-criticality applications
— The configuration guarantees the performance and timeliness of control applications
— The configuration provides maximum Quality-of-Service for dynamic Edge applications
— The configuration consists of:

e Decisions on the partitions that provide temporal and
spatial isolation among mixed-criticality applications

e Mapping the tasks to the cores of multicore Edge nodes
* Routing of streams on TSN
e Synthesizing the task schedule tables and GCLs
e Remote Attestation using SMARM
e We proposed approaches to handle migration and best-effort scheduling of dynamic Fog applications at runtime

¢ We have developed several algorithms that use heuristics, metaheuristics and Constraint Programming to solve
these combinatorial optimization problems

e We have proposed analytical models for QoC and extensibility that can be integrated to optimization strategies
e We have evaluated the algorithms on several test cases

Vision: Dependable Edge Computing for IT/OT convergence

Convergence of IT and OT
needed for Industry 4.0

Manu-
facturing

IT

Py
S,
&)
& 1. Machine

IT-OT gap crossed with

