

Outline and acknowledgements

- Motivation
- Industry 4.0: IT/OT convergence
- Dependable Edge Computing
 - Edge vs. Fog Computing
 - Virtualization of control
- Configuration problems
 - Mapping and scheduling of tasks
 - Routing and scheduling of messages
 - Fault-tolerance, quality of control, extensibility and security
- Configuration optimization solutions
- Evaluation and use case

This presentation is based on the PhD theses of the following DTU PhD students:

- Dr. Mohammadreza Barzegaran
- Dr. Niklas Reusch

The work has been done in collaboration with:

- TTTech Computertechnik AG
- Danfoss Power Electronics A/S

The work has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 764785: FORA—Fog Computing for Robotics and Industrial Automation

Vision: OT becomes virtualized (Control-as-a-Service)

- Edge Computing: An architecture where resources of an edge server are placed at the very edge of the Internet, near Cyber-Physical Systems (CPSs), mobile devices, sensors, and Industrial Internet of Things (IIoT) endpoints.
- Benefits: Reduced latency, bandwidth efficiency, enhanced privacy & security.
- **Dependable Edge Computing:** Ensuring reliable, fault-tolerant, and secure data processing at the edge, especially for critical applications.
- Benefits: Enhanced robustness, reduced risks, trustworthy operations.

Evaluation results

Fog Computing Platform Configuration (FCPC) has 3 variants:

- 1. FCPC/M—ignores mapping optimization
- 2. FCPC/Q—ignores the QoC optimization
- 3. FCPC/P-ignores the control applications' period optimization

Test	No.	Total No. of	Total	Total No. of	ΩΩ		Ω	Ω	
cases	of	Control	No. of	Tasks for Criticality	of	for	for	for	
	Cores	Applications	Tasks	level of [0-4]	FCPC	FCPC/M	FCPC/Q	FCPC/P	
1	2	2	12	{1,2,2,1,6}	0,19	48%	Not Feasible	60%	
2	2	3	23	{3,2,5,4,9}	0,34	5%	Not Feasible	Not Feasible	
3	2	2	17	{2,2,4,3,6}	0,21	5%	Not Feasible	33%	
4	2	2	23	{2,1,7,6,7}	0,29	13%	Not Feasible	13%	
5	3	3	32	{1,4,8,8,11}	0,21	39%	Not Feasible	55%	
6	3	3	31	{2,3,9,7,10}	0,22	85%	Not Feasible	50%	
7	3	4	33	{4,4,8,7,12}	0,26	15%	Not Feasible	10%	
8	4	4	44	{4,6,11,9,14}	0,20	29%	Not Feasible	72%	
9	5	6	54	{7,5,14,10,18}	0,21	21%	Not Feasible	Not Feasible	
10	6	7	63	{6,7,16,12,22}	0,24	21%	Not Feasible	46%	

 Ω is the value of the cost function; a small value means better and well-balanced QoC for control applications

Extensible ECP configuration

• An extensible ECP configuration is synthesized at design time and considers changes in runtime.

- The changes can be future critical applications, Edge applications or both; handled by appropriate technique put together in a hierarchical scheduling model
- The extensible schedule accommodates a larger number of future control applications and provides a shorter response time for Edge applications

• The extensible configuration uses the uniform distribution of the periodic slack in schedules to host the changes. – The slack in the schedules is distributed uniformly at design time

- The slack is used to allocate resources for dimensioned servers to handle applications

Extensit		CT	A 11 1 11	.			1					Clou	
	ole Col	nfiguration	Optimizatio	on Stra	tegy (EC	OS) ha	s been evalu	lated o	n three scen	arios:		0	
1.	Suppo	rting future	e control ap	plicatio	ns								
		g Edge app			Edg	Edge applications					atic		
۷.	nostin	g ruge app	lications			Not known at design time Configuration							
3.	Extend	ling with up	ogrades			Aperiodic, best-effort O Runtime Constraints Constrain							
					Fut	Future control applications					allocation Edge applications use the remaining		
					Not	t known when t	he initial	Problem: Synthesize an extensible static configuration at			resources at runtime		
						config. is created Goal: added later without		design time Goals: guarantee QoC, support future			The control applications use the resource allocated statically at design time via the		
						modifying the initial config.			and accommodate Fog		synthesized configuration		
	TC	Total no. of	Mean util. of	Perce	ntage of	RT ² of F	og application 1	RT ² of Fe	og application 2		og application 3		
		tasks / flows	FCCAs ¹		ported	-	asks: 16	-	asks: 21	-	Tasks: 35		
	#	in FCCAs ¹			CAs ¹		lows: 15		lows: 20		Flows: 38		
	#	36/58	57%	ECOS 100%	ECOS/E 78%	ECOS	ECOS/E 3.97	ECOS 2.82	ECOS/E 5.66	ECOS 4.73	ECOS/E 7.43		
	2	37/65	55%	100%	89%	1.42	1.91	2.75	4.92	6.74	9.56		
	3	30/20	50%	100%	96%	1.26	3.36	2.94	4.88	5.16	12.29		
	4	29/32	45%	100%	81%	2.17	3.27	3.64	5.65	5.18	7.34		
	5	33/40	44%	100%	96%	1.56	4.14	3.68	5.81	4.36	9.44		
	6	44/45	40%	100%	90%	1.47	2.96	3.14	4.17	4.96	5.82		
	7	37/35	39%	100%	83%	1.19	3.95	3.88	3.96	2.96	4.76		
		33/34	37%	100%	90%	2.18	2.93	3.14	5.84	2.84	9.64		
	8	25/20					3.77	4.43	5.93	2.35	4.74		
	8 9 10	25/28 18/21	31% 27%	100% 100%	98% 82%	2.37	3.79	4.82	5.97	2.85	6.68		

- Probably targeted at the nuclear program of Iran
- Used multiple zero-day vulnerabilities
- Manipulates PLCs in SCADA systems, commonly used in safety-critical systems
- Highly sophisticated & targeted:
 - Only attacks industrial drives from two vendors
 - Only attacks drives which spin at a certain frequency (gas centrifuges)
 - Slightly modifies frequency over period of months to increase wear but remain stealthy

26

Evaluation

- Python, CP-SAT solver from Google OR-tools
- Medium-sized industrial inspired testcase
- NOEXT: scheduler without optimization for extensibility/security
- EXT: scheduler with optimization
- EXT significantly reduces avg. & worst-case response time for random edge applications
- EXT significantly reduces the maximum unattested time for all provers
- The benefits come at a slight increase in the latencies of critical applications (still schedulable)

,		
	NOEXT	EXT
Maximum unattested time	425	150
Worst-case edge-app response time	350	233
Average-case edge-app response time	66,421	45,117
Total critical app latency	4,668	5,141

Comparison of NOEXT vs. EXT

	NOEXT	EXT
E1	121.75	79.75 (-34.5%)
E2	180.83	107.83 (-40.37%)
E3	215	185.17 (-13.87%)
E4	166.25	148.33 (-10.78%)
E5	161.67	134.67 (-16.7%)
E6	109.83	109 (-0.76%)
E7	101.5	65.33 (-35.64%)

Response time for randomly-appearing edge applications (E1-E7)

33

Summary

- We proposed several approaches to the design time ECP configuration optimization for mixed-criticality applications
 - The configuration guarantees the performance and timeliness of control applications
 - The configuration provides maximum Quality-of-Service for dynamic Edge applications
 - The configuration consists of:
 - Decisions on the partitions that provide temporal and spatial isolation among mixed-criticality applications
 - Mapping the tasks to the cores of multicore Edge nodes
 - Routing of streams on TSN
 - Synthesizing the task schedule tables and GCLs
 - Remote Attestation using SMARM
- We proposed approaches to handle migration and best-effort scheduling of dynamic Fog applications at runtime
- We have developed several algorithms that use heuristics, metaheuristics and Constraint Programming to solve these combinatorial optimization problems
- We have proposed analytical models for QoC and extensibility that can be integrated to optimization strategies
- We have evaluated the algorithms on several test cases
- 38

