Safety Challenges for Autonomous Vehicles in the Absence of Connectivity

Akhil Shetty
Department of Mechanical Engineering UC Berkeley

Promise of Automated Vehicles (AVs)

- >1M lives lost each year due to traffic crashes
- Aim to eliminate crashes by replacing human drivers
- >\$100B invested in the AV dream
- Will save 600k lives and \$230B in economic costs by 2045
- AV future just around the corner...

Reality Check

It's 2020. Where are our selfdriving cars?

In the age of Al advances, self-driving cars turned out to be harder than people expected.

> 17 fatalities, 736 crashes: The shocking toll of Tesla's Autopilot

Tesla's driver-assistance system, known as Autopilot, has been involved in far more crashes than previously reported

NATIONAL
Nearly 400 car crashes in 11 months involved automated tech, companies tell regulators
June 15, $2022 \cdot$ 1:26 PMET
By The Associated Press
transpo / autonomous cars / TECH
Cruise robotaxi collides with fire truck in San Francisco, leaving one injured

One week after California approved 24/7 paid robotaxi services in San Francisco, a crash occurred between an autonomous Cruise taxi and a city fire department truck late at night.
 Aug 18, 2023, 9:49 AM PDT I D 14 Comments / 4i New

- f e

[^0]Cruise's self-driving cars reportedly caused traffic issues in San Francisco's North Beach area.

A Well-Known Statistic

94% of all crashes caused by human error.

A Well-Known Statistic?

94\% of all crashes caused by human error.

What the NHTSA report actually says...

"The critical reason was assigned to drivers in an estimated 2,046,000 crashes that comprise 94 percent of the NMVCCS crashes at the national level. However, in none of these cases was the assignment intended to
blame the driver for causing the crash."

What the NHTSA report actually says...

"The critical reason was assigned to drivers in an estimated 2,046,000 crashes that comprise 94 percent of the NMVCCS crashes at the national level. However, in none of these cases was the assignment intended to blame the driver for causing the crash."

If not human error, what causes these crashes?

Why do Crashes Occur?

- Vehicle Failure
- Steering, braking, wheel defects
- 1% of all crashes [1]
- Overt Driver Error
- Drunk, Speeding, Traffic Violation
- <60\% of all crashes [1, 2]
- (Seemingly) Rational Driving
- Occlusions, misjudging behavior
- Uncertainty about state/behavior of neighboring vehicles

Information Gap!

A Taxonomy of Crashes

Information Gap

- Our safety depends on positions and actions of neighboring vehicles
- If perfectly observed, $A V$ can hope to be safe - a technology problem
- Partially observed in typical traffic scenarios
- Occlusions - partial state
- Behavior Prediction - only current action observed
Merging - Behavior Uncertainty

How can an AV be safe?

- Statistical techniques on partial observations to estimate state/action [1-3]
- Can reduce crash probability but cannot guarantee safety
- Worst case safety
- Mobileye's RSS Framework [4]
- Robust to worst case across all possible states and reasonable behaviors - guaranteed safety
- Bridge information gap
- I2V/V2V communication [5]
- (Most) AVs do not use this - only rely on within vehicle sensing

The Holy Grail of Full Autonomy

Most AV companies do not rely on vehicle-to-vehicle (V2V) or infrastructure-to-vehicle (I2V) communication:

- Can deploy faster
- Cost effective
- Avoid security vulnerabilities due to malicious agents
- Humans don't need it, why should AVs?

Our Central Thesis

12V/V2V communication is crucial for ensuring that AVs avoid crashes due to information gaps

- Worst case safety: too strict
- AV cannot make left-turns or merge into traffic
- Estimation from partial observations
- Cannot guarantee safety even allowing for small crash probability

An Information Gap Crash

Left Turn under Occlusion

Can an AV avoid this fate?

Can an AV avoid this fate?

Uber AV Crash in Tempe, AZ (March 2017)

Can an AV avoid this fate?

Assumptions

- AV (Yellow) has perfect sensing/perception capabilities - can "see" perfectly in its field of view
- Blue cars are human driven (HV)
- follow traffic rules
- no overt errors
- best reaction time
- HV will go at its original speed until it sees the AV - attempts to brake to a stop

Can an AV avoid this fate?

- What can the AV do to avoid crash?
- Not much once it decides to turn: too close to CZ to stop in time
- AV can only be safe if it turns when HV is far enough from CZ or it is slow enough
- But, AV doesn't know HV's position or speed while deciding to turn!

Information Gap!

Safety despite Information Gap

- Worst Case Safety
- Estimation from Partial Observations

Worst Case Safety

- Worst case: HV at the edge of AV's occluded field of view
- How slow should the HV be to stop in time?
- HV's speed must be <17 mph
- Typical speed limit - 30 mph

AV cannot make left turn if it wants to be worst-case safe!

Estimation from Partial Observations

- Suppose AV is willing to accept a low crash probability
- Information Gap: HV's Position and Speed
- Partial Observation: AV observes HV flow while it waits to turn
- How can the AV use this information?

Estimation from Partial Observations

- Model for HVs - Poisson arrivals with rate λ at 25 mph
- AV does not know λ but can estimate by observing HV flow

AV's Decision:

High λ
Low λ
Do not Turn Turn

Estimation from Partial Observations

- Formulate this as a hypothesis testing problem for the AV

HO: High λ
Do not Turn
H1: Low λ Turn

How long does the $A V$ need to wait to be confident enough to turn?

Estimation from Partial Observations

- Formulate this as a hypothesis testing problem for the AV

HO: High λ
Do not Turn
H1: Low λ
Turn

How long does the AV need to wait to be confident enough to turn?

AV would have to wait > 7 min !

Common Information Gap Scenarios

Merging
(Behavior)

Occluded Turns (State)

Connectivity is Crucial

- No information gap if AV uses I2V connectivity
- A sensor placed 50 m away from intersection could alert the AV about a potential collision
- This technology is already available!

Connectivity is a prerequisite for a safe AV future.

Risk Assessment of Automated Vehicles

AV Testing Approaches

- Testing via Simulation
- Simulator is only an approximation
- Closed Course Testing
- Covers only a small subset of all realworld scenarios
- On-road Testing
- Gold standard
- Millions of miles covered by major AV companies
- Compare human and AV crashes per mile?

Human crash rate: 1 every 500K miles

Metrics can be Misleading

Human crash rate: 1 every
500 K miles

Maintaining lane crash rate:
1 every 1.6 M "maintaining lane" miles

Left turn crash rate:
1 every 91K "left turn" miles

- Crashes per mile doesn't take into account maneuvers, locations, road conditions, vehicle/pedestrian behavior
- Varies significantly based on maneuver:
- Left turn crashes 170 times as likely as crashes while maintaining lane (per mile)
- AVs have only been tested in limited domains - performance may not generalize to all contexts
- Can create a false sense of security

Not all miles driven are equal

Risk assessment must take into account the context in which miles were driven

Not all miles driven are equal

How should we account for diversity of driving contexts?

Driving Context

Left turn on Hawthorne Blvd and Sepulveda Blvd

Driving context: description of driving scenario based on factors that influence crash risk

- Eg., maneuver, location, traffic density, time of day, road user behavior

Can be described at various levels:

- No context: AV covers 100 ft
- Maneuver level: AV makes a left turn
- (Maneuver, location, time of day) level: A northbound AV on Hawthorne Blvd makes a left turn on to westbound Sepulveda Blvd during morning peak hour traffic

Driving Context

Left turn on Hawthorne Blvd and Sepulveda Blvd

- The more descriptive the driving context:
- more specific risk assessment
- lesser data available for assessment
- Suitable level of abstraction required to capture driving diversity in risk assessment

Driving Context

Left turn on Hawthorne Blvd and Sepulveda Blvd

- The more descriptive the driving context:
- more specific risk assessment
- lesser data available for assessment
- Suitable level of abstraction required to capture driving diversity in risk assessment

No Context

Crashes per mile

What safety metrics follow from considering driving context?

Maneuver Level Crash Analysis

A Simple Maneuver-level Crash Risk Model

p_{m} : AV's crash probability during maneuver type m

$$
\begin{aligned}
& \underbrace{C_{m}}_{\begin{array}{c}
\text { Total crashes } \\
\text { involving } \\
\text { maneuver }
\end{array}} \sim \operatorname{Bin}(\underbrace{N_{m},}_{\begin{array}{c}
\text { Frequency of } \\
\text { maneuver }
\end{array}} p_{m}) \\
& \left\{\hat{p}_{m}=\frac{C_{m}}{N_{m}}\right.
\end{aligned}
$$

MLE estimate of crash
probability during
maneuver

How significant is the effect of driving maneuver on crash risk?

Leveraging Human Driving Data

MLE estimate of crash probability during
maneuver

$$
\hat{p}_{m}=\frac{C_{m}}{N_{m}} \quad \text { Police Reports } \quad \text { Connected Vehicle Data }
$$

- Do not have AV testing data
- Humans drive billions of miles every year across diverse driving contexts
- Data available:
- Police reported crashes
- Vehicle maneuver frequency (eg., left/right turns, lane changes)
- Provides a useful risk prior for regions in which AVs haven't been tested

Torrance Case Study

- 12.4 mile stretch of Pacific Coast Highway in Torrance, California
- Data available for 29 signalized intersections along this stretch
- Maneuver level frequency data from Wejo Ltd. and Sensys Networks
- Crash data from police reports
- Can compute crash risk estimates for the average human driver

Maneuver Level Crash Risk

- Maneuvers involved in highest number of crashes (maintaining lane) do not have the highest crash probability (left turn)
- Significant variation in estimated crash probability across maneuvers

Effect of Location

Diamond Street

$$
\hat{p}_{\mathrm{lt}}^{\mathrm{D}}=6.7 \times 10^{-6}
$$

Palos Verdes Boulevard

$$
\hat{p}_{\mathrm{lt}}^{\mathrm{P}}=9.3 \times 10^{-8}
$$

70 times larger!
Crash risk varies considerably with location

San Francisco Crash Risk

All Crashes

Left Turn Crash Risk

San Francisco Crash Risk

Left Turn Crash Risk

Right Turn Crash Risk

Route Risk

Route Risk

A route can be viewed as a sequence of (maneuver, location) pairs

$$
R=\left\{r_{t}\right\}_{t=0}^{L} \quad r_{t}=\left(m_{t}, i_{t}\right)^{\text {Location in }} \begin{aligned}
& \text { th } \text { step }
\end{aligned}
$$

Maneuver in
$t^{\text {th }}$ step
$P($ Crash along route $R)=1-\Pi_{t=0}^{L}\left(1-P_{t}\right)$,

$$
\approx \sum_{t} \hat{p}_{m_{t}}^{i_{t}}
$$

Sum of crash probabilities
over all steps

Route Risk

Diamond St to Beryl St on Pacific Coast Highway

Route:

1. Left turn from Diamond St. onto PCH
2. Staying in lane between Diamond St. and Carnelian St
3. Going straight through the Carnelian St. intersection
4. Lane change leading up to Beryl St. intersection
5. Right turn from PCH onto Beryl St.

Probability of crash during route:
6.8×10^{-6} (Left turn crash probability at
Diamond St $=6.7 \times 10^{-6}$)

Economic Cost

Left turn crashes have the highest economic cost per maneuver

- Economic cost of maneuver type m

$$
\hat{E}_{m}=\hat{p}_{\substack{\text { Economic cost } \\ \text { Crash } \\ \text { probability }}} e_{m}
$$

- Compare left and right turns:
- \$100.8 per 1000 left turns vs $\$ 4.2$ per 1000 right turns
- Explains why UPS routes do not involve left turns

Policy Implications

- Investment in Connected Infrastructure
- Can be expensive -> Public-private partnerships
- Cybersecurity research
- Safety metrics must account for diversity
- Disengagements per mile: perverse incentives
- More data disclosure necessary
- Types of maneuvers, environments
- How does performance generalize?
- Driving test for AVs?
- Phased deployment from "easy" to "difficult" ODDs

References

- A. S., M. Yu, A. Kurzhanskiy, O. Grembek, H. Tavafoghi, P. Varaiya, "Safety Challenges for Autonomous Vehicles in the Absence of Connectivity", Transportation Research: Part C, 2021
- A. S., H. Tavafoghi, A. Kurzhanskiy, K. Poolla, P. Varaiya, " Risk Assessment of Autonomous Vehicles across Diverse Driving Contexts", IEEE ITSC 2021
- A. S., H. Tavafoghi, A. Kurzhanskiy, K. Poolla, P. Varaiya, "Automated Vehicle Safety and Deployment: Lessons from Human Crashes", IEEE ICCVE 2022

Thank you!

Email: shetty.akhil@berkeley.edu

[^0]: San Francisco Experiencing Traffic Jam After Cruise, Waymo Get Green Light to Operate 24/7 Robotaxi Services

