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This presentation is based on the recently published article: 
Burton S., Herd. B. Addressing uncertainty in the safety assurance of machine-learning" Frontiers of computer science, Vol 5., 2023: 
10.3389/fcomp.2023.1132580, https://www.frontiersin.org/articles/10.3389/fcomp.2023.1132580 
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SAFE INTELLIGENT SYSTEMS
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Integrate sensing, 
computation, control and 
networking into physical 
objects and infrastructure, 
connecting them to the 
internet and each other

Achieve higher levels of 
automation by 
implementing or mimicking 
cognitive abilities such as 
perception, reasoning, 
learning and adaptation

Absence of 
unacceptable risk of 
harm to persons or the 
environment

Demonstrably
dependable: utility, 
reliability, availability,…*

*Can also include properties such as cost, privacy, security, etc. We require systems that are 
safe and yet still able to provide the required functional value (utility), under specific 
constraints (e.g. cost)
May also require the alignment between technical capabilities and ethical expectations

Cognitive cyber-physical systemsSafety & Trustworthiness
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Traditional approach to safety
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Functional Safety: 
“Absence of unreasonable risk due to hazards caused by malfunctioning behaviour of E/E systems”

Risk associated with 

malfunctioning behaviour

Random hardware errors

Photo: Christian Taube - Own work

Systematic errors (HW and SW)

Picture: Mathworks
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What’s changing? 
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Increasing complexity and uncertainty in cognitive cyber-physical systems

Source: https://www.bbc.com/news/world-asia-india-38155635

Scope & unpredictability 

of operational domain and 

critical events

Inaccuracies & noise in 

environmental sensors and 

signal processing

Source: https://velodynelidar.com Source https://www.cityscapes-dataset.com/examples

Heuristics or machine 

learning techniques with 

unpredictable results
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Definitions of complexity and uncertainty
Complex systems

A complex system exhibits behaviours that are 

emergent properties of the interactions between the 

parts of the system, where the behaviours would not 

be predicted based on knowledge of the parts and 

their interactions alone. 

Caused by e.g.:

▪ Semi-permeable boundaries

▪ Non-linearity, mode transitions, tipping points

▪ Self-organization and ad-hoc systems

See: Burton, Simon, John Alexander McDermid, Philip Garnett, and Rob Weaver. "Safety, Complexity, and 
Automated Driving: Holistic Perspectives on Safety Assurance." Computer 54, no. 8 (2021): 22-32.
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Safety is becoming less about what happens 

when individual technical components break 

and more about managing the emergent risk 

associated with increasing complexity
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Definitions of complexity and uncertainty
Complexity of cognitive cyber-physical systems

▪ Complexity and unpredictability of the operational 
domain

▪ Complexity and unpredictability of the system itself

▪ Increasing transfer of decision function to the system

Lead to Semantic Gaps* – discrepancy between the 
intended and specified functionality.

Leads to hazardous systemic failures, moral responsibility 
gaps, liability gaps and safety assurance gaps

*Burton, Habli, Lawton, McDermid, Morgan, Porter. "Mind the gaps: Assuring the safety of autonomous systems 
from an engineering, ethical, and legal perspective." Artificial Intelligence 279 (2020): 103201.
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Definitions of complexity and uncertainty

4/6/2023 © Fraunhofer IKSSeite 10

Definitions of uncertainty

*W. E. Walker et al. “Defining Uncertainty: A Conceptual Basis for Uncertainty Management in Model-Based Decision 
Support”. In: Integrated Assessment 4.1 (Mar. 2003), pp. 5–17. 

Environmental,
task and system 

complexity

Environment
(world)

Observations
(Evidence)

System
(Decision 
maker)

Manifestations of uncertainty

Assurance 
Uncertainty: 

Lack of confidence 
in assurance
arguments

Interpretation of: Lovell, B. E. (1995). A taxonomy of types of uncertainty

Uncertainty:
Any deviation from the unachievable ideal of completely deterministic knowledge of the relevant system*
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Definitions of complexity and uncertainty
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Relative definitions of uncertainty

Environmental,
task and system 

complexity

Environment
(world)

Observations
(Evidence)

System
(Decision 
maker)

Manifestations of uncertainty

Assurance 
Uncertainty: 

Lack of confidence 
in assurance
arguments

Interpretation of: Lovell, B. E. (1995). A taxonomy of types of uncertainty

Uncertainty:
Any deviation from the unachievable ideal of completely deterministic knowledge of the relevant system

Dow, S. C. (2012). Uncertainty about Uncertainty. London: Palgrave Macmillan UK.

Bradley, R., and Drechsler, M. (2014). Types of uncertainty. Erkenntnis 79, 1225–1248. doi: 10.1007/s10670-013-9518-4
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Uncertainty and machine learning
Specification insufficiencies

Arguing the safety of machine learning functions requires:

A detailed and measurable specification of the safety requirements:

• E.g.: Each pedestrian within the critical range is correctly detected within any sequence of 

N images with a true positive rate, vertical and horizontal deviation from ground truth 

sufficient to avoid collisions.

• Which KPIs/Metrics can be used to measure the conformance to the requirements?

• How to derive threshold values (validation targets) for these metrics?

A detailed understanding of the operational design domain and system context:

• E.g.: Distribution various types of pedestrians, definition of critical scenarios, capabilities of 

sources (e.g. camera) and consumers (e.g. planning algorithms) within the system context.

Beware of the specification paradox!

• If we use of ML to learn “unspecifiable” behaviour via a set of representative training data, 

how do we define under which set of conditions the function is safe? and what are the 

consequences of using data from the same distribution to do so?
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Uncertainty and machine learning
Performance insufficiencies

Machine Learning can be seen as a class of heuristic algorithms:

• Heuristic: technique for solving a problem more quickly when classic methods are too 

slow for finding an approximate solution, or when classic methods fail to find any exact 

solution. This is achieved by trading optimality, completeness, accuracy, or precision 

for speed.

Gaps between theoretically optimal function and the trained model

▪ Robustness, generalization, Bias: outputs sensitive to small changes in the inputs, 
semantic deficiencies in training data, …

▪ Prediction uncertainty: Confidence scores not necessarily indication of probability of 
correctness

▪ Related to the concepts of task complexity/learnability, sample complexity 
(number of samples required for a problem to be efficiently learnable) and model 
expressiveness (inherent capacity of the model to express functions of a given 
complexity)
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Uncertainty and machine learning
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Definition of the safety assurance problem

We would like to demonstrate that for all inputs i of I, the model M

fulfils its safety guarantees G, under the assumptions A

Absolute perfection is neither achievable nor required to achieve a 

tolerable level of residual risk according to an acceptance criteria (AC), 

therefore we need to achieve a probability of success for a given 

distribution of inputs in the operational design domain ODD

But, we cannot directly demonstrate the Guarantees G, for all inputs. 

Instead, we can evaluate measurable properties P of M (e.g. precision, 

recall, robustness, calibrated error rate) for a finite number of samples j

of I (e.g. our test dataset)

Definition of the safety assurance problem:

How can we argue that a sufficiently small residual risk has been achieved, 

despite potential insufficiencies in the specification and performance of the 

ML function, based on an appropriate selection of measurable properties 

P and input samples j?

Which samples j are

representative of the

input domain? 

Which combination

of Properties P best

represent G? 
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Safety assurance arguments
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What is assurance?

assurance

grounds for justified confidence that a claim has been or will be achieved

assurance case

reasoned, auditable artefact created that supports the contention that its top-

level claim (or set of claims) is satisfied, including systematic argumentation and 

its underlying evidence and explicit assumptions that support the claim(s)

Note 1 to entry: An assurance case contains the following and their relationships:

— one or more claims about properties;

— arguments that logically link the evidence and any assumptions to the claim(s);

— a body of evidence and possibly assumptions supporting these arguments for the claim(s); and

— justification of the choice of top-level claim and the method of reasoning.



Public information

Safety assurance arguments
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Modelling assurance arguments / safety cases

Goal Structuring Notation (GSN)1

Graphical notation that represents the elements of an assurance argument 

and the relationships between them

Shows how goals (claims) can be broken into sub-goals until they can be 

supported by direct reference to evidence

Documents argumentation strategies as well as context information, 

including assumptions and justifications

Can be structured hierarchically and modularly, assurance claim points 

used to indicate where additional argumentation is required to increase 

confidence in the argument

Defined uses the Structured Assurance Case Metamodel (SACM)2

Goal Assumption

A

Strategy

Sub-goal refined on 
another diagram

Sub-goal

Evidence Evidence

Context

1 https://scsc.uk/gsn
2 https://www.omg.org/spec/SACM

https://scsc.uk/gsn
https://www.omg.org/spec/SACM
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Safety assurance arguments

06.04.2023 © Fraunhofer IKSSeite 19

Assurance arguments for machine learning

Input space &
Task

Data

ML Model
Environmental,
task and system 

complexity

Argument on sufficiency of input space 
definition and requirements 
specifications

Performance
Insufficiencies

Specification 
Insufficiencies

Argument on sufficiency of datasets

Argument on performance 
characteristics of ML model
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Safety assurance arguments
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Assurance arguments for machine learning

Example elaboration of the assurance argument

regarding potential insufficiencies in the

specification

The input space (ODD) is sufficiently well understood and defined to 

ensure completeness of the safety requirements, training and test data

The set of derived requirements and properties used to define 

validation targets is sufficient to ensure that the higher-level safety 

requirements allocation to the ML function are fulfilled.

Potential performance limitations of the ML model are sufficiently well 

defined, such that residual errors can be compensated for at the system 

level
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Even if we take a structured 

approach to formulating a safety 

assurance argument for ML – can 

we really trust the argument to 

reflect the actual residual risk of 

the system?

06.04.2023 © Fraunhofer IKSSeite 21
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Confidence in assurance arguments
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Types of assurance uncertainty

Assurance Claim Points (ACPs)

Indicate assertions in the Assurance argument whose truth must be 

justified in order for the argument to be compelling (i.e. believed).

Confidence arguments can be used to provide the justification for the 

assertions

Allows for a separation of concerns when developing the assurance 

argument:

• Arguing properties of the product vs. arguing properties of 

the argument!

Hawkins, Richard, Tim Kelly, John Knight, and Patrick Graydon. "A new approach to creating clear safety 

arguments." In Advances in systems safety, pp. 3-23. Springer, London, 2011.
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Confidence in assurance arguments
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Assurance Claim Points

Asserted Inference: Probable truth of the premises (sub-claims) is 

sufficient to establish the probable truth of the conclusion (Claim).

Hawkins, Richard, Tim Kelly, John Knight, and Patrick Graydon. "A new approach to creating clear safety 

arguments." In Advances in systems safety, pp. 3-23. Springer, London, 2011.

Asserted context: Context (e.g. assumptions) is appropriate for the 

argument elements (e.g. claims) to which it applies.

Asserted evidence: The evidence that is put forward is sufficient to 

support the claim and is trustworthy.
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Uncertainty in the assurance arguments for ML

4/6/2023 © Fraunhofer IKSSeite 25

Asserted context

Asserted context – Assumptions on the input space

Are all assumptions on the input space to the ML function valid?

▪ E.g. is there consensus as to what constitutes a pedestrian and under 

which conditions pedestrians could appear and with which behaviors?

▪ Implicit assumption on the input space would undermine the 

confidence in the argument that the safety requirements have

been adequately defined

Severity of uncertainty:

▪ Only qualitative definition of the input space possible leading to 

severe uncertainty and possibly ignorance (level 4) of relevant 

characteristics of the pedestrians or the environment

Improvement measures:

▪ Simplification of requirements to detect all obstacles regardless of 

human or non-human, more restrictive assumptions on the operational 

design domain, …

ACP A1
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Uncertainty in the assurance arguments for ML
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Asserted inference

Asserted inference – Completeness of the argument

Have all possible causes of functional insufficiencies been 

addressed?

▪ Due to the inherent complexity of the environment and system 

(including the black-box nature of ML itself) it might not be possible to 

directly identify causes of functional insufficiencies

▪ partial observability of failure causes due to entanglement of

causal factors of insufficiencies

▪ E.g. Relevance of “Out-of-distribution” events and effectiveness 

of out-of-distribution detection measures

Severity of uncertainty:

▪ Severe observational uncertainty regarding the causes of 

insufficiencies

Improvement measures:

▪ Systematic safety analysis supported by targeted experiments

ACP S1
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Uncertainty in the assurance arguments for ML
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Asserted evidence

Asserted evidence – integrity and validity of verification results

To what extent does a particular verification evidence imply that a property of 

the ML model has been achieved?

▪ Are the verification results representative of the actual performance in the field?

▪ Have representative samples been used, and has a sufficient coverage of the input 

space been achieved?

▪ Have the results of the verification activities been correctly interpreted?

Severity of uncertainty:

▪ E.g. what level of statistical confidence has been achieved with the evidence (level 2)?

▪ Are the assumptions used to extrapolate the results of the tests valid (level 3 and 4)?

Improvement measures:

▪ Statistical analysis of test results, diverse verification methods (e.g. ODD coverage and

search-based testing for corner cases), additional arguments for confidence in  the 

evidence

G5.2.1.x.2.y: 
{Requirement Y} is 

fulfilled

S5.2.1.x.2.y.1: Argument 
over each safety-related 

property of the
requirement

CG5.2.1.x.2.y.1: Safety-

related properties assigned 
to the requirement

G5.2.1.x.2.y.1.z: {Safety 

related property Z} is 
fulfilled

CG5.2.1.x.2.y.1.z.1: Target 

values / KPI assigned to the 
property

E5.2.1.x.2
.y.1.z.1: 
Evidence

E5.2.1.x.2
.y.1.z.1.n: 
Evidence

For each safety related 
property Z of the derived 

safety requirement Y

...

ACP-E5
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Residual uncertainty in the assurance argument
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Definition of the safety assurance problem:

How can we argue that a sufficiently small residual risk has been achieved, 

despite potential insufficiencies in the specification and performance of the 

ML function, based on an appropriate selection of measurable properties 

P and input samples j?

Input space &
Task

Data

ML Model
Environmental,
task and system 

complexity

Argument on sufficiency of input space 
definition and requirements 
specifications

Performance
Insufficiencies

Specification 
Insufficiencies

Argument on sufficiency of datasets

Argument on performance 
characteristics of ML model

For any non-trivial system there will inevitably be a gap between our estimated and the actual achieved level of risk 

This needs to be compensated for by either conservative methods of assurance and/or mitigations at the system level

Assurance uncertainty
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Continuously reducing uncertainties
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Safety Lifecycle for AI/ML-based functions

Uncertainties in the specification, models and the assurance case must be iteratively reduced over time

The level of environment, task and system complexity must be increased in line with increasing confidence

AI system Safety 

requirements and 

acceptance criteria

AI System 

Assurance 

argument 

evaluationSafety analysis: 

evaluation of causes and 

impact of ML insufficiencies

Evaluation of 

performance with respect 

to safety requirements

Development and 

architectural measures to 

address insufficiencies

Validity and Integrity of 

Training and Test Datasets

Convincing  argument cannot be achieved or 

changes in the environment are detected

AI system 

Operations

System development, test, assurance and operation
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Discussion: will ML ever be „Safe enough“?
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Yes, but for which levels of complexity and definition of „safe enough“?

Complexity of environment, task, system and models

Uncertainty in the assurance argument

▪ E.g.: DNNs for Pedestrian

prediction

▪ E.g.: Linear Regression for „virtual 

sensors“ in control algorithms

▪ E.g.: Support Vector Machines

for trajectory prediction
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Discussion: will ML ever be „Safe enough“?
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Yes, but for which levels of complexity and definition of „safe enough“?

Complexity of environment, task, system and models

Uncertainty in the assurance argument

▪ E.g.: Linear Regression for „virtual 

sensors“ in control algorithms

▪ E.g.: Support Vector Machines

for trajectory prediction

▪ E.g.: DNNs for Pedestrian

prediction

Development of state-of-the-art

in safety assurance methods,

Application of ISO PAS 8800
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Safety assurance of AI/ML
Some ongoing research questions

▪ Bridging the gap between societal and ethical expectations and technical 
acceptance criteria

▪ Definition of risk acceptance criteria for complex highly-automated 
systems, including target values for common ML metrics

▪ Addressing assurance uncertainty: Role of quantitative and qualitative 
evidence in assuring the safety of cognitive cyber-physical systems 

▪ Engineering of “Safe” and “Assurable” ML approaches 

▪ Continuous, automated safety assurance of AI/ML

▪ Uncertainty propagation analysis during design and run-time uncertainty 
quantification

▪ Safety assurance of self-adaptive systems

»Any sufficiently advanced 
technology is indistinguishable from 
magic«

Arthur C. Clarke (1917-2008)
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Addressing uncertainty in assurance of ML
Summary

There are no straightforward answers to whether ML is safe or not, 
as this depends on:

▪ Our ability to precisely express the safety conditions of the task

▪ The nature of the data used to train and test the system

▪ Underlying properties of the technologies and algorithms used

A systematic approach is required to reason about safety of ML

But, we also need to understand, and compensate for, the 
limits of our safety argumentation

The use of assurance arguments and assurance claim points, along 
with an understanding of the causes and manifestations of 
uncertainty provide a promising way forward
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Other ongoing research
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Micro Operational Design Domains (µODDs)
Organising systematic factors influencing the perception system

Concept of µODDs allows to split ODD into several 

µODDs (e.g., for benefiting from different levels of risk 

in different situations*)
*P. Koopman, B. Osyk, and J. Weast, “Autonomous vehicles meet the physical world: RSS, variability, uncertainty, and proving safety,” in Extended Preprint of Int. Conf. on Computer Safety, Reliability, and Security, 2019, pp. 245–253. [Online]. 
Available: https://arxiv.org/ftp/arxiv/papers/1911/1911.01207.pdf
Source: P. Schleiss, Y. Hagiwara, I. Kurzidem, F. Carella: „Towards the Quantitative Verification of Deep Learning for Safe Perception“, in Proc. of 12th IEEE International Workshop on Software Certification at 33rd IEEE International Symposium on 
Software Reliability Engineering (ISSRE), 2022.

Use of µODDs to describe an operational condition in 

which the occurrence of a ML error can be treated as 

aleatoric uncertainty 

https://arxiv.org/ftp/arxiv/papers/1911/1911.01207.pdf
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Quantitative verification of AI
Relationship between test sample size, measured performance and confidence

▪ Confidence (probability of not making a statistical 

error) generally grows with increased sample size

▪ Distance between measured performance and 

required minimal performance in the field also 

influences confidence

▪ Example

▪ Binomial tests are used for classification problem

▪ When measuring a performance of 75% after 500 tests the 

minimal performance in the field will be at least 61% with a 

confidence of 99.9999999% or even 67% with a reduced 

confidence of 99.99% (bottom left) 

▪ Concept may not scale when facing a multitude of 

µODDs

▪ What about other metrics? E.g. robustness, heat-

maps, etc.
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Measuring Uncertainty @ Runtime
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Increasing utility by consider current level of risk instead of worst case considerations

-z z

E.g., ISO/IEC GUIDE 98-3:2008(E) Guide to the expression of uncertainty in measurement

Uncertainty quantification and propagation:

▪ First research for quantifying ML- uncertainty at runtime beyond soft-max (e.g., deep ensembles & out-of-distribution detection)

▪ Can relax worst-case assumptions through risk-awareness of current context and thus increase the system’s utility 

▪ Only applicable to addressing quantifiable statistical uncertainty

▪ Statistical soundness critical for correct uncertainty propagation and estimation at system level



Public information

Continuous Assurance

Unknown Unknowns

Known
Unknowns

Known
Knowns

Unexplained causes of 
hazards

Managing System

Unawareness of factors 
causing system-level 

hazard

Managed System

Unawareness of factors 
violating assurance 

assumptions

Limits of Quantifying Uncertainty
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Layers of uncertainty: How to benefit from continuous assurance?

AI Component

Unawareness of 
influencing factors 
during training and 
safety-relevant 
properties

Hazard is contained and does not lead to 
system-level hazards

Hazard contained at 
expense of utility

Near misses,
accidents (one-offs)

Recurring risk and 
accidents

Out-of-distribution detection, 
plausibility checks, redundancy
⇨ Adaptation of control parameters

Monitor validity of 
assumptions
⇨ e.g. minimal risk
manvoure

1) Pinpointing of underlying issues
2) Re-evaluation and update of 

assurance argument
3) System update

Logging, reporting and 
analysis of events & 
accident
⇨ Restrictions on 
operating conditions


