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Overview of the presentation

1. Introduction and motivation

2. Defining uncertainty

3. Uncertainty and machine learning from a safety perspective

4. Constructing a safety assurance argument for machine learning
5. Analysing uncertainties in the assurance argument

6. Continuous assurance

7. Outlook and research perspectives

This presentation is based on the recently published article:
Burton S., Herd. B. Addressing uncertainty in the safety assurance of machine-learning" Frontiers of computer science, Vol 5., 2023:
10.3389/fcomp.2023.1132580, https://www.frontiersin.org/articles/10.3389/fcomp.2023.1132580
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Safety & Trustworthiness

A A
[ | [ |

Absence of
unacceptable risk of
harm to persons or the
environment

Demonstrably
dependable: utility,

*Can also include properties such as cost, privacy, security, etc. We require systems that are
safe and yet still able to provide the required functional value (utility), under specific
constraints (e.q. cost)

May also require the alignment between technical capabilities and ethical expectations
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Traditional approach to safety

Functional Safety:
“Absence of unreasonable risk due to hazards caused by malfunctioning behaviour of E/E systems”

Risk associated with

malfunctioning behaviour

Random hardware errors

"\/

Systematic errors (HW and SW)

259  FUNC(woid, NVM CODE) NwM CalcCrc

260 |

25l PZVAR( uints, AUTOMATIC, NVK APPL DATA ) NvM DataAddress
262 )

263 ¢

264 #if ( NVM_KUMBER OF CALC_CRC3Z_BLOCKS > 0 )

265 /* If current block use 32 bit crc ¥/

266 1 (NVM_BD CRCTYPE (MyM CurrentBlockDescriptorPtr->blockDeszc
267 {

268 NvA_CalcCrc_Int32( NvM _DataAddress ):

Photo: Christian Taube - Own work Picture: Mathworks
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What's changing?

Increasing complexity and uncertainty in cognitive cyber-physical systems

Source: https://www.bbc.com/news/world-asia-india-38155635 Source: https://velodynelidar.com Source https://www.cityscapes-dataset.com/examples

Scope & unpredictability Inaccuracies & noise in Heuristics or machine
of operational domain and environmental sensors and learning techniques with
critical events signal processing unpredictable results

\
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Definitions of complexity and uncertainty
Complex systems

A complex system exhibits behaviours that are
emergent properties of the interactions between the
parts of the system, where the behaviours would not
be predicted based on knowledge of the parts and
their interactions alone.

Caused by e.g.:

= Semi-permeable boundaries
= Non-linearity, mode transitions, tipping points

= Self-organization and ad-hoc systems

See: Burton, Simon, John Alexander McDermid, Philip Garnett, and Rob Weaver. "Safety, Complexity, and
Automated Driving: Holistic Perspectives on Safety Assurance." Computer 54, no. 8 (2021): 22-32.

\
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Definitions of complexity and uncertainty
Complexity of cognitive cyber-physical systems

= Complexity and unpredictability of the operational
domain

= Complexity and unpredictability of the system itself

= Increasing transfer of decision function to the system

Lead to Semantic Gaps* — discrepancy between the
intended and specified functionality.

Leads to hazardous systemic failures, moral responsibility
gaps, liability gaps and safety assurance gaps

*Burton, Habli, Lawton, McDermid, Morgan, Porter. "Mind the gaps: Assuring the safety of autonomous systems
from an engineering, ethical, and legal perspective." Artificial Intelligence 279 (2020): 103201.
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Definitions of complexity and uncertainty
Definitions of uncertainty

Uncertainty:
Any deviation from the unachievable ideal of completely deterministic knowledge of the relevant system*

Environment
Scope & unpredictability (world)

of operational domain and

Observations
(Evidence)

critical events

Source: https/Avww bbc com/newsivorld-asia-ndia-38155635

Assurance
Inaccuracies & noise in Environmental, System Uncertainty:
environmental sensors and task and system E> (Decision | > Lack of confidence
i ) complexity :
signal processing maker) In assurance
arguments

Source: https /Avelodynelidar.com

Heuristics or machine
learning techniques with

unpredictable results

Source https /Avww.dityscapes-Gataset com/examples

*W. E. Walker et al. “Defining Uncertainty: A Conceptual Basis for Uncertainty Management in Model-Based Decision Manifestations of uncertainty
Support”. In: Integrated Assessment 4.1 (Mar. 2003), pp. 5-17. Interpretation of: Lovell, B. E. (1995). A taxonomy of types of uncertainty

\
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Definitions of complexity and uncertainty
Relative definitions of uncertainty

Uncertainty:
Any deviation from the unachievable ideal of completely deterministic knowledge of the relevant system

Love | Detolion D e

Level 4 Knowledge K of structural relationships of the system under . -
consideration can not be assumed. It may, however, be possible to Seve rlty Definition
rank K subjectively such that higher uncertainty is entailed in a
lower ranking of K. Ignorance Not enough information to make any judgement

Level 3 Uncertainty refers to the completeness of the evidence on which S E i . k alori . biecti
the judgement of probability is reached. Weight is a measure of evere nough information to make a partial or imprecise (subjective) Assurance
complelte-nless of re}evant evidence. On this level, subjective judgement Uncertain ty:
probabilities or evidence theory may be useful. It can thus be seen | .
as referring to the validity of available evidence. Mild Enough information to make a precise (e.g., probabilistically | Lack of confidence

Level 2 Uncertainty is represented as a matter of belief and is inversely correct) judgement Inassurance
proportional to the probability measure, i.e., it is greater, the ) ] . arguments
lower the probability measure becomes. It can thus be measured Certainty Full knowledge about the real-world system under consideration
by 1 — p where p is the degree of belief in the argument a
conditional on evidence . An important measure here are Bradley, R., and Drechsler, M. (2014). Types of uncertainty. Erkenntnis 79, 1225-1248. doi: 10.1007/510670-013-9518-4
statistical confidence intervals. Levels 1 and 2 can be viewed as
referring to the integrity of available evidence.

Level 1 Uncertainty is inherent in reality and can be captured in a
stochastic term €. The degree of uncertainty is then measured by
the variance of ¢, i.e., o (€). Manifestations of uncertainty

Dow, S. C. (2012). Uncertainty about Uncertainty. London: Palgrave Macmillan UK. Interpretation of: Lovell, B. E. (1995). A taxonomy of types of uncertainty

L
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Uncertainty and machine learning
Specification insufficiencies

Arguing the safety of machine learning functions requires:

A detailed and measurable specification of the safety requirements:
« E.g.: Each pedestrian within the critical range is correctly detected within any sequence of
N images with a true positive rate, vertical and horizontal deviation from ground truth

sufficient to avoid collisions.
* Which KPIs/Metrics can be used to measure the conformance to the requirements?

*  How to derive threshold values (validation targets) for these metrics?

A detailed understanding of the operational design domain and system context:

«  E.g.: Distribution various types of pedestrians, definition of critical scenarios, capabilities of
sources (e.g. camera) and consumers (e.g. planning algorithms) within the system context.

Beware of the specification paradox!

« If we use of ML to learn “unspecifiable” behaviour via a set of representative training data,
how do we define under which set of conditions the function is safe? and what are the
consequences of using data from the same distribution to do so?

Z Fraunhofer

IKS
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Uncertainty and machine learning
Performance insufficiencies

Machine Learning can be seen as a class of heuristic algorithms:

Heuristic: technique for solving a problem more quickly when classic methods are too
slow for finding an approximate solution, or when classic methods fail to find any exact
solution. This is achieved by trading optimality, completeness, accuracy, or precision
for speed.
. . . . e 1 L) T "‘1 l—r-‘z)“c;l tf‘. car: 0.91 = ‘ .
Gaps between theoretically optimal function and the trained model -ar: 1. ' =k 8 COF: == T g AT 0:35 dy

™

=  Robustness, generalization, Bias: outputs sensitive to small changes in the inputs,
semantic deficiencies in training data, ...

= Prediction uncertainty: Confidence scores not necessarily indication of probability of
correctness

= Related to the concepts of task complexity/learnability, sample complexity
(number of samples required for a problem to be efficiently learnable) and model
expressiveness (inherent capacity of the model to express functions of a given
complexity)

Seite 14 4/6/2023 © Fraunhofer IKS Public information
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Uncertainty and machine learning
Definition of the safety assurance problem

0

We would like to demonstrate that for all inputs i of I, the model M
fulfils its safety guarantees G, under the assumptions A

Vi e LAGY) = G(@i, M(i))

Absolute perfection is neither achievable nor required to achieve a
tolerable level of residual risk according to an acceptance criteria (AC),
therefore we need to achieve a probability of success for a given
distribution of inputs in the operational design domain ODD

Definition of the safety assurance problem:
How can we argue that a sufficiently small residual risk has been achieved,
— despite potential insufficiencies in the specification and performance of the

ZieI,A(i)/\G(i,M(i)) IP()DD(i) ML fuhction, based o.n an appropriate selection of measurable properties
: > AC P and input samples j?
2_ier.Axi) Popp (i) | o -
#(j € I:A() A PGLM())}  2ieramncimay Popp(d)
| | #Hiel: A : - IP i
But, we cannot directly demonstrate the Guarantees G, for all inputs. {] (J)} ZleLA(l) opp(i)
Instead, we can evalu.ate measurable propertlles.P of M (e.q. precmon,. Which combination Wil samles faie
recall, robustness, calibrated error rate) for a finite number of samples j , ,
of Properties P best representative of the
of I (e.g. our test dataset) ] . :
represent G? input domain?

\
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Safety assurance arguments
What is assurance?

assurance

grounds for justified confidence that a claim has been or will be achieved

dassurance case

reasoned, auditable artefact created that supports the contention that its top-
level claim (or set of claims) is satisfied, including systematic argumentation and
its underlying evidence and explicit assumptions that support the claim(s)

Note 1 to entry: An assurance case contains the following and their relationships:

— one or more claims about properties;

— arguments that logically link the evidence and any assumptions to the claim(s);

— a body of evidence and possibly assumptions supporting these arguments for the claim(s); and

— justification of the choice of top-level claim and the method of reasoning.
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INTERNATIONAL  ISO/IEC/
STANDARD IEEE
15026-1

First edition
201%-03

Systems and software engineering —
Systems and software assurance —

Part 1:
Concepts and vocabulary

Ingénierie des systémes et du logiciel — Assurance des systémes et du
pichi

Partie 1: Concepts et vocabulaire

1S0,/IEC/IEEE 15026-1:2013(E)

& IS0/IEC 2019
@ [EEE 2019

\
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Safety assurance arguments
Modelling assurance arguments / safety cases

Goal Structuring Notation (GSN)’

Graphical notation that represents the elements of an assurance argument
and the relationships between them

Shows how goals (claims) can be broken into sub-goals until they can be
supported by direct reference to evidence

Documents argumentation strategies as well as context information,
including assumptions and justifications

Can be structured hierarchically and modularly, assurance claim points
used to indicate where additional argumentation is required to increase

confidence in the argument

Defined uses the Structured Assurance Case Metamodel (SACM)?2

<

=3
T

A 4

Sub-goal

Sub-goal refined on
another diagram
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" https://scsc.uk/gsn
2 https://wvww.omg.org/spec/SACM
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Safety assurance arguments
Assurance arguments for machine learning

T .
/ Al: {Assumptions
I"\\_on the input space} - —

— - A =t {Definition of the 3

functionality} '

A2 {Assumpt'ioﬁ;"“\\_ G1: The ML system satisfies its

{ on the system y
e >

allocated safety requirements

. context}] - A within the defined context C2: {Safety .\\___.

Input space & . . e T requirements allocated |

Task Argument on sufficiency of input space 7 A3: (Rik associatedwith \_tothe MLsystem}
<@  <finition and requirements \_systematic and random hardware

e __ faults has been addressed]
specifications - faults has been addressed) —a

Argument on sufficiency of datasets

. " s1: Functional insufficiencies el i TN
/have been identified, minimised or | [ e {Ca.uses of
A t £ mitigated during specification, | Lo fun_c’Flon:-.ll J
rgument on perrormance design and operation . insuffidencies}
characteristics of ML model
(] \
[ ]
' |
(] G2: Potentialinzufficiencies.of G4: Performance insufficiencies G6: Insufficiencies during
' the specification of the ML ha\.re been addressed in the operation are detected and
: systermn have been addressed design of the ML system mitigation measures defined
. // : _J'\\\ /\\X
: ‘\\;'\' N \/\/
L} [ ] []
(] e . (] (] T
(] SpeC|flcat|0n (] Performance [} G3: Training and verification datasets G5: Performance with respect
Insufficiencies Insufficiencies are sufficient to achieve and ' '
demonstrate the required level of tothe safety requirements has
performance been demonstrated
< <
=
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Safety assurance arguments
Assurance arguments for machine learning

’;\1 {As_sur_nphons\

'\\_gn the input spacef}_/.f

. Bi—

Example elaboration of the assurance argument

: C1: [Definition of the |

regarding potential insufficiencies in the \futioeat] )
specification

The input space (ODD) is sufficiently well understood and defined to
ensure completeness of the safety requirements, training and test data

The set of derived requirements and properties used to define
validation targets is sufficient to ensure that the higher-level safety
requirements allocation to the ML function are fulfilled.

Potential performance limitations of the ML model are sufficiently well
defined, such that residual errors can be compensated for at the system
level

Seite 20 4/6/2023 © Fraunhofer IKS
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T e {Safety \

_H requirements allocated |
“_tothe ML system)

-

G2: Potential insufficiencies of
the specification of the ML
system have been addressed

)

/ §2.1: Insufficiencies in the / Cé: [Causes of ; _
.-': specification have been identified, = insufficiencies in the )
minimised or mitigated | . specification}

e Az {Assumpﬁéﬁ;"'\__ \'

. i i it \
G2.1: The input space is sufficiently k op ey G2.3: The Performance limitations of ‘

.-/".

. -~ context] :
well defined to ensure completeness L the ML model are sufficiently wel

of derived safety requirements, — . A
training and test data / c4: (Derived safety defined such that & safe behaviour at

g | the system level can be ensured
'.__ requirements onthe

_F 3 ML system} 7

B2 S x : ¥ N
/Standardised®, / E21.2: % N\ 2 ™
/ W, \ " / \ / “
( definitions | | Known III i EEZ‘ILWS.I \ __.-’ E2.3.1: \'\ / E2.3.2: /E2330
| describing || triggering | | mpirical | | Definitionof || Resultsof | Resultsof
', theinput / * conditions /' -.__\.observahons/_, | performance || safety )\ verification |

“~domain— S~ s 4

‘. limitations / . analyses / '\ activities /
. VAN SN A

Y
G2.2: The-derived safety requirements
are complete and consistent with
respect to the {safety requirements
allocated to the ML system}

> a5
[ ca:(Safety-related
properties}

-

7 c7: (safety-related /52.2: Argument over each |

| propertiesof ML [ safety-related property of |

LY models} A the requirements |
G2.2.1: The set of {Safety related G2.2.x: [Safety-related property
properties] are sufficient to ensure X} is defined consistent with the

that the safety requirements safety requirements allocated to
allocated to the ML system are met the system

For each safety-related
property X

SR2xaN

SN, S T
L/ E2242 N E22.43 S R2xz ) B22x3

Derived \ N _ ! '

safety | Results of Results Cff | Ds:::tzd | [ Resultsof | | Resultsof |

\ require /| safety IR systematic : I\ safety )| systematic |
" /o analyses S reviews Ll analyses /. reviews
N ments S N ~ S . ments S N AN Y,

\
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1 N EEE EN
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. —
Even if we take a structure s
" on the input space}
B C1: {Definition of the
A2: {Assumptions G1: The ML system satisfies its functionality}

approach to formulating a safety B L e

| requirements allocated

A3: {Risk associated with _tothe ML system}

systematic and random hardware

assurance argument for ML - can ==
we really trust the argument to L)
reflect the actual residual risk of R Er—— -
the system?

' $1: Functional insufficiencies

the specification of the ML have been addressed in the operation are detected and

system have been addressed design of the ML system mitigation measures defined

G3: Training and verification datasets
are sufficient to achieve and
demonstrate the required level of
performance

G5: Performance with respect
to the safety requirements has
been demonstrated

—
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Confidence in assurance arguments
Types of assurance uncertainty

Assurance Claim Points (ACPs)

Indicate assertions in the Assurance argument whose truth must be
justified in order for the argument to be compelling (i.e. believed).

Confidence arguments can be used to provide the justification for the
assertions

Allows for a separation of concerns when developing the assurance
argument:

» Arguing properties of the product vs. arguing properties of
the argument!

Seite 23 06.04.2023 © Fraunhofer IKS
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G1

System is acceptably
safe to operate

ACP1

Con1 ACP2 /g1
< Argument over all
Hazard list hazards

G2

Hazard 1 mitigated

G3

Hazard 2 mitigated

ACP3

Sn1

Evidence
about H1

Hawkins, Richard, Tim Kelly, John Knight, and Patrick Graydon. "A new approach to creating clear safety
arguments.” In Advances in systems safety, pp. 3-23. Springer, London, 2011.
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Confidence in assurance arguments
Assurance Claim Points

Asserted evidence: The evidence that is put forward is sufficient to
support the claim and is trustworthy.

Asserted context: Context (e.g. assumptions) is appropriate for the
argument elements (e.g. claims) to which it applies.

Asserted Inference: Probable truth of the premises (sub-claims) is
sufficient to establish the probable truth of the conclusion (Claim).

Hawkins, Richard, Tim Kelly, John Knight, and Patrick Graydon. "A new approach to creating clear safety
arguments.” In Advances in systems safety, pp. 3-23. Springer, London, 2011.

\
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Uncertainty in the assurance arguments for ML
Asserted context

Asserted context — Assumptions on the input space

ACP AT

/ AL {Assumptions A

Are all assumptions on the input space to the ML function valid? “ontheinputspace] .
= E.g. is there consensus as to what constitutes a pedestrian and under B [ ED“-‘H”‘“'C':‘D‘;“"E
. " . . . . A, R i P unctionality
which conditions pedestrians could appear and with which behaviors? A2 {Assumptions . GL: The ML system satisfies its
. . . ) on the system allocated safety requirements
= |mplicit assumption on the input space would undermine the . context} within the defined context C2: (Safety
confidence in the argument that the safety requirements have e ' requirements allocated
been adequately defined " A3: {Risk associated with "._tothe MLsystem} _
' systematic and random hardware
\"a.____faulis has been addressed} _—p
Severity of uncertainty: B -
= Only qualitative definition of the input space possible leading to v
severe uncertainty and possibly ignorance (level 4) of relevant | S1: Functional insufficiencies -
_ . . /have been identified, minimised or C3: {Causes of
characteristics of the pedestrians or the environment : ' functional

mitigated during specification, ) e
design and operation / e insufficiencies} %
Improvement measures: JT\\

provemer ) — — ~ —
= Simplification of requirements to detect all obstacles regardless of

human or non-human, more restrictive assumptions on the operational

design domain, ...

\
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Uncertainty in the assurance arguments for ML
Asserted inference

Asserted inference — Completeness of the argument

/ AL {Assumptions A
"'--.,__c-n the input space}

Have all possible causes of functional insufficiencies been

addressed? P
= Due to the inherent complexity of the environment and system A2 {Assumptions .
(including the black-box nature of ML itself) it might not be possible to __...mgts:;t}em
directly identify causes of functional insufficiencies o
partial observability of failure causes due to entanglement of © A3: {Risk associated with

systematic and random hardware

causal factors of insufficiencies
E.g. Relevance of “Out-of-distribution” events and effectiveness
of out-of-distribution detection measures

Severity of uncertainty:
= Severe observational uncertainty regarding the causes of

S -_faults has been addressed}

C1: {Definition of the -'

Gl: The ML system satisfies its functionality}
allocated safety requirements
within the defined context C2: {Safety

requirements allocated
"*.____tothe ML system]}

ACP ST

| 81: Functional insufficiencies
/have been identified, minimised or
mitigated during specification,
design and operation

€3: [Causesof
_ functional
. insufficiencies}

insufficiencies
.-""""r._-_

Improvement measures:
= Systematic safety analysis supported by targeted experiments

Seite 26 4/6/2023 © Fraunhofer IKS Public information
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Uncertainty in the assurance arguments for ML
Asserted evidence

Asserted evidence - integrity and validity of verification results

To what extent does a particular verification evidence imply that a property of

the ML model has been achieved?

= Are the verification results representative of the actual performance in the field?

= Have representative samples been used, and has a sufficient coverage of the input
space been achieved?

= Have the results of the verification activities been correctly interpreted?

G5.2.1.x.2.y:
{Requirement Y} is
fulfilled

A 4

f §5.2.1.x.2.y.1: Argument
€G5.2.1.x.2.y.1: Safety- over each safety-related
related properties assigned property of the
to the requirement requirement

For each safety related
property Z of the derived
safety requirement Y

Severity of uncertainty: €G5.2.1.x.2.y.1.2.1: Tar
Lo . . . . values / KPI assigned to
= E.g. what level of statistical confidence has been achieved with the evidence (level 2) property

= Are the assumptions used to extrapolate the results of the tests valid (level 3 and 4)?

Improvement measures:

= Statistical analysis of test results, diverse verification methods (e.g. ODD coverage and
search-based testing for corner cases), additional arguments for confidence in the
evidence

Seite 27 4/6/2023 © Fraunhofer IKS Public information

get G5.2.1.x.2.y.1.z: {Safety
the related property Z} is
fulfilled

ACP-E5

E5.2.1.x.2
y.1l.z2.1:
Evidence

E5.2.1.x.2
y.1l.z.1.n:
Evidence
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Residual uncertainty in the assurance argument

|
Definition of the safety assurance problem: Input space & . .

o . . ) Task Argument on sufficiency of input space
How can we argue that a sufficiently small residual risk has been achieved, <IN i cfinition and requirements

despite potential insufficiencies in the specification and performance of the specifications

ML function, based on an appropriate selection of measurable properties
P and input samples j?

#{j € 1 AG) A PG,MG)}  2ierawmnciimiy) Popp()
#lj e I A(j)) >_ic1.4¢) PPopp (i)

Argument on sufficiency of datasets

Argument on performance
characteristics of ML model

Assurance uncertainty

' '
:Specification : Performarice §
Insufficiencies—insufficiencies

For any non-trivial system there will inevitably be a gap between our estimated and the actual achieved level of risk

This needs to be compensated for by either conservative methods of assurance and/or mitigations at the system level

\
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Continuously reducing uncertainties
Safety Lifecycle for Al/ML-based functions

Development and Validity and Integrity of
architectural measures to Training and Test Datasets
address insufficiencies Al System
Al system Safety y
. Assurance Al system R
— requirements and —> —> > . >
; teri argument Operations
acceptance criteria Safety analysis: Evaluation of evaluation
7y evaluation of causes and performance with respect
impact of ML insufficiencies to safety requirements
Convincing argument cannot be achieved or

changes in the environment are detected

d
<«

Uncertainties in the specification, models and the assurance case must be iteratively reduced over time

The level of environment, task and system complexity must be increased in line with increasing confidence

\
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Defining uncertainty

Uncertainty and machine learning from a safety perspective
Constructing a safety assurance argument for machine learning
Analysing uncertainties in the assurance argument

Continuous assurance

N o un A~ W N =

Outlook and research perspectives
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Discussion: will ML ever be ,,Safe enough”?
Yes, but for which levels of complexity and definition of ,safe enough”?
Uncertainty in the assurance argument
A

= E.g.: DNNs for Pedestrian
prediction

= E.g.: Support Vector Machines
for trajectory prediction

= E.g.: Linear Regression for ,virtual
sensors” in control algorithms
—— >
Complexity of environment, task, system and models

\
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Discussion: will ML ever be ,,Safe enough”?
Yes, but for which levels of complexity and definition of ,safe enough”?

Uncertainty in the assurance argument
A 5>

i Development of state-of-the-art
. in safety assurance methods,
I Application of ISO PAS 8800

= E.g.: DNNs for Pedestrian
prediction

E.g.: Support Vector Machines
for trajectory prediction
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Complexity of environment, task, system and models
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Safety assurance of Al/ML
Some ongoing research questions

Bridging the gap between societal and ethical expectations and technical
acceptance criteria

Definition of risk acceptance criteria for complex highly-automated
systems, including target values for common ML metrics

Addressing assurance uncertainty: Role of quantitative and qualitative
evidence in assuring the safety of cognitive cyber-physical systems

Engineering of “Safe” and “Assurable” ML approaches

Continuous, automated safety assurance of Al/ML

Uncertainty propagation analysis during design and run-time uncertainty
quantification

= Safety assurance of self-adaptive systems

Seite 34 06.04.2023 © Fraunhofer IKS Public information
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Addressing uncertainty in assurance of ML
summary

There are no straightforward answers to whether ML is safe or not,
as this depends on:

= Our ability to precisely express the safety conditions of the task

= The nature of the data used to train and test the system

= Underlying properties of the technologies and algorithms used

A systematic approach is required to reason about safety of ML

But, we also need to understand, and compensate for, the
limits of our safety argumentation

-
e
uncertainty provide a promising way forward 1% - .
' % Y . -

The use of assurance arguments and assurance claim points, along
with an understanding of the causes and manifestations of

\
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Contact

Prof. Simon Burton
Research Division Director, Safety Assurance

Tel. +49 89 547088-341
simon.burton@iks.fraunhofer.de

Fraunhofer IKS
Hansastrasse 32
80686 Munchen
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Other ongoing research
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Micro Operational Design Domains (uODDs)
Organising systematic factors influencing the perception system

|
High R L TP Heavy traffic
occlusion zone riiiiiiiiiiiiii\
~

Number
hidden
layers

- Mostly

Hyper
parameters

Model type  Architecture cloudy

Morning Morning

Clear sky;  Fine cloudy; :"‘N "‘;:’::’Iv before after I
High Normal Medi u'; b',w&m‘:;‘ sunrise; sunrise; [
visibility visibility 3 B Normal [
visibility MY visibility | :
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Feature-Based

zone

Concept of yODDs allows to split ODD into several Use of yODDs to describe an operational condition in
MODDs (e.g., for benefiting from different levels of risk which the occurrence of a ML error can be treated as
in different situations*) aleatoric uncertainty

*P. Koopman, B. Osyk, and J. Weast, “Autonomous vehicles meet the physical world: RSS, variability, uncertainty, and proving safety,” in Extended Preprint of Int. Conf. on Computer Safety, Reliability, and Security, 2019, pp. 245-253. [Online].
Available: https://arxiv.org/ftp/arxiv/papers/1911/1911.01207.pdf

Source: P. Schleiss, Y. Hagiwara, I. Kurzidem, F. Carella: ,, Towards the Quantitative Verification of Deep Learning for Safe Perception®, in Proc. of 12th IEEE International Workshop on Software Certification at 33rd IEEE International Symposium on
Software Reliability Engineering (ISSRE), 2022.
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Quantitative verification of Al
Relationship between test sample size, measured performance and confidence

. s . . . Measured Performance: 0.75 Measured Performance: 0.9 Measured Performance: 0.99
= Confidence (probability of not making a statistical 10°-
error) generally grows with increased sample size 10

= Distance between measured performance and
required minimal performance in the field also

H H 10°-
influences confidence ntegrity
10'- (Confidence)
= Example 2 o -0
. p » . é 0.00 025 050 075 100000 025 050 075 100000 025 0.50 0.75 10 1'1°:
" Blnomlal teStS are Used for ClaSS|f|Cat|On prOblem E Measured Performance: 0.75 Measured Performance: 0.9 Measured Performance: 0.99 : ::12—7
= -8
= When measuring a performance of 75% after 500 tests the & ™ N,
minimal performance in the field will be at least 61% with a . m" L ol
i . “is 0.61, with i ests, ests, true ests, true
confidence of 99.9999999% or even 67% with a reduced | e perormarce pecmenes parrormancs
confidence of 99.99% (bottom left) 500 oot 2 cerainty N J] o2
= Concept may not scale when facing a multitude of 250
pMODDs
0=
= What about other metrics? Eg rObUStneSS, heat- 05 08 07 08 .o..g 10 05 06 07 08 09 10 0_5. 06 07 08 09 10
Minimum True Performance (Lower Bound of Confidence Interval)
maps, etc.
—
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Measuring Uncertainty @ Runtime
Increasing utility by consider current level of risk instead of worst case considerations

Fo o= (yo’uyo)

Xn—l = (xn—l ux”,l) g

F Zy = (Zo’u’zo) 2

Xn = (xruuxn) N
Xne1 = (Xps1, Uy, ) S 34.1% 34.1%

R = (yl’ulh) ;

=

=1

Xogk = (xn+k: uxn+k_1)

—-30 2o —-1o ] 1o 2o 3o
E.g., ISO/IEC GUIDE 98-3:2008(E) Guide to the expression of uncertainty in measurement

Uncertainty quantification and propagation:

= First research for quantifying ML- uncertainty at runtime beyond soft-max (e.g., deep ensembles & out-of-distribution detection)
= Can relax worst-case assumptions through risk-awareness of current context and thus increase the system’s utility

= Only applicable to addressing quantifiable statistical uncertainty

= Statistical soundness critical for correct uncertainty propagation and estimation at system level

\
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Limits of Quantifying Uncertainty
Layers of uncertainty: How to benefit from continuous assurance?

Continuous Assurance ) Pinpointing of underlying issues
) Re-evaluation and update of

assurance argument
System update

Managing System

A 4

Monitor validity of
assumptions
= e.g. minimal risk

Logging, reporting and

analysis of events &
Managed System Out-of-distribution detection, & accident Q s
plausibility checks, redundancy Knowns = Restrictions on Knowns
Sesssossoos=c > Known
Al Component wknown : AR immsmoeees > Known
! | Unknowns
Unawareness of - |—> ---------- :
influencing factors m
during training and nnown Unawareness of factors Unawareness of factors |—> Unknown Unknowns
safety-relevant ____ violating assurance causing system-level
properties assumptions hazard Unexplained causes of
hazards
Hazard is contained and does not lead to Hazard contained at Near misses, Recurring risk and
system-level hazards expense of utility accidents (one-offs) accidents
—
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