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Brains behind new 5G data communications networks described below!
New Bill Gates sponsored corona virus vaccine, w/nano tech, will run
everything and control everyone who are still necessary, like bots to serve
the elite? Get your vaccine now?

@ Get the facts about COVID-19

The Rise of Al
There's an Al revolution sweenina across the world.
Yet few people know the rea

& youtube.com

®) Tl O

You Won't Believe What Obama Says In This Video! &



Mission: Impossible - Ghost Protocol (2011) -
Hallway Projection Scene
https://www.youtube.com/watch?v=7DkV8WE7DFA



https://www.youtube.com/watch?v=7DkV8WE7DFA

Deception

def

To deceive £ to intentionally cause another agent to
acquire or continue to have a false belief, or to be
prevented from acquiring or cease to have a true belief.






Incentives: What is the Purpose of the Deception?

Mimetic Deception Cryptic Deception

Honey-X Obfuscation




Strategies: Single Actor or Multiple Actors?

Intensive Deception Extensive Deception
®
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Perturbation Mixing




Defensive Deception: Taxonomy

Informational
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Pawlick J, Colbert E, Zhu Q. A game-theoretic taxonomy and survey of defensive deception for cybersecurity and privacy. ACM Computing Surveys

(CSUR). 2019 Aug 30;52(4):1-28.




Talk Outline

1) Introduction

2) Taxonomy of defensive deception

3) Signaling games for mimetic cyber deception
* Honey-X
» Attack Engagement

4) Dynamic games for cyber-physical deception
* Robotic Deception

e Conjectural Meta-Learning

5) Future challenges



Taxonomy Based on Game Theoretic Principles

Informational
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Pawlick J, Colbert E, Zhu Q. Modeling and analysis of leaky deception using signaling games with evidence. IEEE Transactions on Information Forensics

and Security. 2018 Dec 12;14(7):1871-86.




Mimesis and Modeling Belief

* Signaling games model belief [Lewis 1969, Crawford & Sobel 1982].

Network Defender (““Sender”)

Attacker (“Receiver”)

Actiona

a = 0: Attack

e a = 1: Withdraw

Type 6 l"’ﬁ\} Deception
0 = 0: Production &% Pro
6 = 1: Honeypot

Message m

m = 0: Active
m = 1: Inactive

e.g., incoming packets, mouse

. e.g., use proxy to hide
movement, icons on desktop g 2

location of database



Mimesis and Modeling Belief

e But “deception program” may leak evidence.

Network Defender (““Sender”)

Attacker (“Receiver”)

Actiona

a = 0: Attack

e a = 1: Withdraw

Type 6

6 = 0: Production :
6 = 1: Honeypot

| Message m

m = 0: Active
m = 1: Inactive

Evidence e

e = 0: No alarm ]
e = 1: Alarm

e.g., packets come from single source,
mouse movement is atypical



Mixed Strategies, Belief, and Expected Utility

e Attacker has (common) prior belief of system type 6 with probability (wp) p(8).
* Defender chooses message m wp o°(m | 8).

 Defender leaks evidence e wp A(e | 8, m).

* Attacker forms belief uf(8 | m,e) and chooses action a wp a®(a|m,e).

Attacker (“Receiver”)

Action a

a=20: Att=ack
a = 1: Withdraw

Type6 Q@R i N Messagem

Deception
Program B m = 0: Active

S — —— — .

6 = 0: Production

6 = 1: Honeypot m = 1: Inactive

Evidence e

A\ \__\

e = 0: No alarm
Network Defender (“Sender”) e = 1: Alarm




Mixed Strategies, Belief, and Expected Utility

e System of type @ has an expected utility of U°(a°,a% | 9).

e Attacker that observes activity level m and evidence e has an expected
utility of Y geg u%(0 | m,e)UR(c® |0, m,e).

Attacker (“Receiver”)

Action a

a=20: Att=ack
, a = 1: Withdraw

Type6 Q@R i N Messagem

Deception
y Program . m = 0: Active
m = 1: Inactive

6 = 0: Production
6 = 1: Honeypot

A\ \__\

Evidence e

e = 0: No alarm
Network Defender (“Sender”) e = 1: Alarm




Perfect Bayesian Nash Equilibrium

A PBNE is a strategy profile (5%, d®*) and posterior beliefs uf(8 | m, e) such that:
Vo € 0,

0" € argmax scps US(0°, 0% | 9),
vm e M,e € EV,
o®* € argmax jrepr Loeo R0 | m,e)UR(c® | 6,m,€),
and

A(e | 6,m)c5(m | 6)p(6)
Ale |8 m)aS(m|0)p®d)’

ut(Om,e) =

Z@'EO

when that fraction is defined.



Detector and Utility Meta-Parameters

“Aggressive Detector”
A lot of false alarms (detect
too quickly/aggressively)

“Conservative Detector”
A lot of miss detection
(detect too
slowly/conservatively)

d positive rate 8

Utility Parameters:
AR = u®(0,m,0) —uR(0,m, 1)
AR =uR(1,m,1) —uR(1,m,0)

(¢=0,=0) False-positive rate a



Equilibrium Regions

B<l—a alg (1= B)AG (1 — a)Af BAG
(Conservative) alf + BAR 1 -+ (1 — a)Af (1 —a)Af + (1 - p)ak BAE + anf
| | | |
S Poolon 0 -> RPlays 0 : - | - : SPoolon0-> RPlays1 | | SPoolon0 > RPlays 1
SPoolon1 - RPlays 0 I SPoolon1 > RPlaysO | 1 - I - I SPoolon1 - RPlays 1
| | | |
| | | |
| | | |
| | | I .
Zero-Dominant Zero-Heavy Middle One-Heavy One-Dominant
p(1) =0 | , | , p(l) =1
| | | |
SPool on 0= RPlays 0 : S Pool on 0 = R Plays 0 : - : - : SPoolon0 > RPlays 1
SPoolon1 - RPlays 0 : - : - : SPoolon1-> RPlays 1 : SPoolon1-> RPlays 1
| | | |
| | | |
| | | |
| | | |

p>1-a (1 - B)Ag ahf BAg (1 - @)af
(Aggressive) (1 —B)AR + (1 — a)AR aAR + BAR BAR + aAR (1 - a)AR + (1 — p)AR




Partially-Separating Equilibria in the Middle Regime

Theorem (Aggressive Detectors). For f > 1 — a, within the Middle regime, there
exists a PBNE in which

55" (m = 1|0 = 0) = 2P (22 - P2

(@2-B2)ag \1-p(1))  @2-p?
St(rn — 110 — 1) — @ _@BAE  (1-p(1)
o (m =116 =1) = @2-p? (aZ—EZ)A‘f( p(1) )
and
c*(a=1m=0,e=0)=0, oc®(a=1m=0,e=1) = aiﬁ,
c*(a=1lm=1e=0)=1 ola=1lm=1e=1) = At
a+pf

and the beliefs are computed by Bayes’ Law in all cases. Here x = 1 — x.



Partially-Separating Equilibria in the Middle Regime

Theorem (Conservative Detectors). For § < 1 — a, within the Middle regime,
there exists a PBNE in which

. B B B2 _ aBAR p(1)
0>*(m=1[0 =0) = B2-a?  (B2-a2)AR (1—p(%))'

O-S*(m — 1|6 — 1) — CZ,BAg (1_p(1)) a

(B2-a)AR\ p(v) /  pP-a?
and
o*@=1m=0e=0=~—""2 oMa=1m=0e=1)=1,

R * — — — — R * — — — _
o a—lIm—l,e—O)—z_a_B, c(a=1m=1e=1) =0,

and the beliefs are computed by Bayes’ Law in all cases.



Partially-Separating
Strategies for S

6 = 1: “Reveal”

honeypot (m = 1) as

inactive wp 0.47.

6 = 0: “Reveal”
production (m = 0) a
active wp 0.89.
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Deception
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Attacker (“Receiver”)
Action a

6 = 0: Production
6 = 1: Honeypot

Network Defender (“Sender™)

Program |

=i

m = 0: Active
' m = 1: Inactive

Evidence e

—_—
a = 0: Attack
a = 1: Withdraw

e = 0: No alarm
e = 1: Alarm
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[ Middle Regime: Partially Separating ]

Coincident lines:
Pooling
Equilibrium #2




Comparative Statics: Detector Quality ] = — «

Sender Strategies J=0.8, G=0.1
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Comparative Statics: AggressivenessG = — (1 —a)

Sender Strategies J=0.5, G=-0.3
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Truth Induction

Theorem (Truth Induction). Set A§ = A¥. Within regimes that feature
unique PBNE, forall J € [0,1] and for any prior probability p(8):

(J,G,p) = ;— for G € [0,1),

1
TU’ G’p) = 9 forG € (_1'0]’ Fraction of messages m = 0 ]
where

T(]' G' p) = 296{0,1} p(H)JS*(m =0 | 0,p)

Aggressive detectors induce a truth-telling convention, while

conservative detectors induce a falsification convention.




The Eye of Providence
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User

Offensive Deception

m = p;(m")
i €{0,1)

m eM meM
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Attacker Detector




User

H, H,
Attacker Attacker
L m
Detector ---———--=------=-TT-oooTTooo Detector
0 1 0 1
Cs (Hy,m,0) Cs (Hy,m,1) Cs (H,,m,0) Cs (H,,m,1)
Ug (Ho,m,0) Ug (Hp,m,1) Ug (H;,m,0) Ug (H;,m,1)

Hu Y, Zhu Q. Game-theoretic Neyman-Pearson detection to combat strategic evasion, in Proceedings of CDC 2022, arXiv preprint
arXiv:2206.05276.



Defensive Deception:
Taxonomy Based on Game Theoretic Principles

Informational Perntharion
A\
Intensive Actions fl
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Dynamic Deception Model: One-Sided Partially
Observable Markov Stochastic Games

« Two-player zero-sum
* Discounted infinite horizon

Action a¥ Action a%

Environment

k

x Reward -rk

Reward r¥

>

<

with dynamics

Observation y* Observation x*

Horak K, Zhu Q, BoSansky B. Manipulating adversary’s belief: A dynamic game approach to deception by design for proactive network security.
International Conference on Decision and Game Theory for Security 2017 Oct 23 (pp. 273-294).



An initial state is drawn from
the initial belief b* € A(X).

P2 observes x¥, P1 observes

yk.

Players take simultaneous

actions (a¥, a¥).

Nature decides the state x**! and
observation y**! at k + 1 according

to transition kernel

k+1 , k+1
ka,a'f,aé‘ (x Y )



P1’s history HE: = (A;xY)¥
P2’s history H¥:= Xx(A; XA, XY xX)k

Policy ¢¥: HF = A(4))

Only need to keep track of belief for
stationary policies

b
: ¢1( ) S A(Al)’
¢« ¢S X - A(Ay)

P1’s belief update under P2’s policy qbz(b):

1>

Pr(y*|af, ¢2)

PV (R Dukex Dabea, Lok ab b (@11 yF)b(a") 2 (2", af)



- Discounted-sum objective: L =Y, prk

* For zero-sum game:

inf¢zsup¢1L(gb1, ¢) = supg, infy, L(p1, P2)

« Convex value function v* maps beliefs over the system state to the expected value.

) = minmax | 32 a0 e)ona(at ad)rt @ of ab) +.0 3 Prlak o 1 o, g (¢4

P2 D1 ok ak aF uk
1:%2 1°Y

 Algorithms: LP and HSVI.



less valuable assets more valuable assets

outside Layer 1 Layer 2 Layer 3
of the network
o > L L
WWW, EMAIL DATABASE ACTUATORS

& SENSORS

[Horak, Zhu, Bosansky, GameSec 2017]

» Defender has perfect information.

Application in
 Attacker has partial observation.

Network Security - Defender manipulates the attacker’s

belief to prevent him from succeeding.
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less valuable assets

more valuable assets

outside Layer 1
of the network

[ >

WWW, EMAIL

Possible network topologies

>

Layer 2

DATABASE

Attack vectors: X, = {@, Layery, Layer,, Layers}

Defense vectors: X, = {@}, i.e., deploy no dynamic resources

Detection states: detected or not.

>

Layer 3

ACTUATORS

& SENSORS



Observable to attacker

[ za=0 L Ta= layer, rA = layer, T4 = layery
\ < éb Layer 1 Layer 2 Layer 3 /
S
/ '-FO\I § %“ ;
1% % wait £ 5 exfiltrate exfiltrate exfiltrate
g g I
1551 ) o 4] o 4] o 4]
compromise compromise compromise
st o O — OHPIOTRE Ty SOOI O
- = —
I ! >
Not observable to attacker I g
. g
I il -+
13 gl O e o T4
<1 compromise compromise
: ‘l'l’ % I engage U engage U '
1= A 1 exfiltrate exfiltrate exfiltrate
\ ] engage engage engage
P I LI AL NI AR I A

Attacker’s actions
« Compromise: Go deeper.

» Exfiltrate: Stay and gain access to
confidential info.

« Takedown: Incur immediate damage
and get detected

any action
block

Defender’s Action

If not detected, defender does nothing.

If detected, defender’s action
* Block: remove the attacker

» Engage: present falsified data to the
attacker



1.0

0.8

0.6

0.4

0.2

Probability of playing 'engage’

00E. . . v s Y e =
0.0 0.2 0.4 0.6 0.8 1.0

Belief about being detected - b

« Optimal defense strategy:
« Engage the attacker who believes that he has not been detected
« Block others

« Demise of the greedy:

Blocking threshold

When attacker’s confidence is
below the threshold, the
defender engages with prob. 1.

37

» The blocking threshold increases when the attacker is closer to the goal of deeper layer penetration.

» Attacker cares less about being detected when getting closer to the asset.
» Less stringent on the belief for engagement when closer to the asset.



-/

Always engaging strategy \

Too good to be true: the
attacker realizes the
engagement.

A bird in the hand is worth
two in the bush: the attacker
chooses immediate damage./

RN
e

Belief about being detected

Always blocking strategy

Temporary solution: attackers
can reenter later.
Curse of exclusion: no

blocking = not detected yet. /

Turn j
* Optimal strategy

e Stabilize the attacker’s belief at around 0.5.

» Attacker’s tradeoff of data exfiltration or being manipulated.

38



Talk Outline

1) Introduction

2) Taxonomy of defensive deception

3) Signaling games for mimetic cyber deception
* Honey-X
» Attack Engagement

4) Dynamic games for cyber-physical deception
* Robotic Deception
* Conjectural Meta-Learning

5) Future challenges



Robotic Deception

Misleading Real
Target @ Target

QP
ij\) Evader

Pursuer

« The evader aims to reach his real target and keep a distance from the pursuer.
« The evader does not want to reveal his real target.

» The pursuer goes after the evader.



Misleading Real
Target @ Target

QP
C}{) Evader

=

Pursuer
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Solution Concept (Informal, (Huang and Zhu, 2021))

 Sequential Rationality: Control u*Y4"1js sequential rational for each
player i under his belief sequence p*%:£71

* Belief consistency: Each player i’s belief sequence 5*%471 js consistent
with rationality under control u*0%71,

Huang L, Zhu Q. A dynamic game framework for rational and persistent robot deception with an application to deceptive pursuit-evasion. IEEE
Transactions on Automation Science and Engineering. 2021.



Probability

-10

o
n

v (Calais v
4 Normandy
Evader
— Prursuer o
T T 1 1 ‘1; 1 1 1 1 i
-8 -6 -4 2 0 2 4 6 8 10
Noisy Trajectory under Coupled Costs and Two-sided Incomplete Information
v (Calais | v
4 Normandy
Evader
w— Pursuer S
T T I I \AI 1 1 I 1 ]
-8 -6 -4 -2 0 2 4 6 8 10
Bayesian Learning
T T X B L] T T T
-Q < - 1]
w— Pursuer’s belief
. Evader’s belief
A 1 L 1 1 1 1
0 5 10 15 20 25 30 35 40
Stage

45



Trajectory : Proposed Policy " Accumulation of Pursuer's Cost
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Future Challenges: Learning-Based Solutions



Belief Calibration

Batch Batch Batch
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Li T, Lei H, Zhu Q. Self-Adaptive Driving in Nonstationary Environments through Conjectural Online Lookahead Adaptation. arXiv preprint arXiv:2210.03209. 2022 Oct 6.






Future Challenges: Human
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Attack Stack ocClal Engineering IDoS Attacks
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Cognitive Process

Stimulus =————s

Sensation

Gather Information

Attention

Filter Information

4
1
1

————— >

Behavior

Process Information

Mental Operations
(e.g., Decision-Making, Reasoning, Learning)

-

Working
Memory

Long-Term
Memory

Store and Retrieve
Information

[Huang and Zhu, 2023]



Future Challenges: Mechanism Design
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Huang L, Zhu Q. RADAMS: Resilient and adaptive alert and attention management strategy against informational denial-of-service (IDoS) attacks. Computers & Security.
2022 Oct 1;121:102844.
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