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Deception

To deceive ≝ to intentionally cause another agent to 
acquire or continue to have a false belief, or to be 
prevented from acquiring or cease to have a true belief.



Strategy

Incentives

Information



Mimetic Deception Cryptic Deception

Incentives: What is the Purpose of the Deception?

Honey-X Obfuscation 



Strategies: Single Actor or Multiple Actors?

Intensive Deception Extensive Deception

• Single target / actor • Multiple targets / actors

Perturbation Mixing 
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1) Introduction

2) Taxonomy of defensive deception

3) Signaling games for mimetic cyber deception
• Honey-X
• Attack Engagement

4) Dynamic games for cyber-physical deception
• Robotic Deception
• Conjectural Meta-Learning

5) Future challenges
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Taxonomy Based on Game Theoretic Principles
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Mimesis and Modeling Belief

• Signaling games model belief [Lewis 1969, Crawford & Sobel 1982].

Type 𝜃
𝜃 = 0: Production 
𝜃 = 1: Honeypot

Attacker (“Receiver”)
Message𝑚
𝑚 = 0: Active
𝑚 = 1: Inactive

Network Defender (“Sender”)

Deception 
Program

Action 𝑎
𝑎 = 0: Attack
𝑎 = 1: Withdraw

e.g., incoming packets, mouse 
movement, icons on desktop e.g., use proxy to hide 

location of database 



Mimesis and Modeling Belief

• But “deception program” may leak evidence.

Type 𝜃
𝜃 = 0: Production 
𝜃 = 1: Honeypot

Attacker (“Receiver”)
Message𝑚
𝑚 = 0: Active
𝑚 = 1: Inactive

Network Defender (“Sender”)

Deception 
Program

Action 𝑎
𝑎 = 0: Attack
𝑎 = 1: Withdraw

Evidence 𝑒
𝑒 = 0: No alarm
𝑒 = 1: Alarme.g., packets come from single source, 

mouse movement is atypical



Mixed Strategies, Belief, and Expected Utility
• Attacker has (common) prior belief of system type  𝜃 with probability (wp)  𝑝 𝜃 .
• Defender chooses message 𝑚 wp  𝜎! 𝑚 𝜃).
• Defender leaks evidence  𝑒 wp  𝜆 𝑒 𝜃,𝑚).
• Attacker forms belief  𝜇" 𝜃 𝑚, 𝑒) and chooses action  𝑎 wp  𝜎" 𝑎 𝑚, 𝑒).
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𝑚 = 0: Active
𝑚 = 1: Inactive

Network Defender (“Sender”)

Deception 
Program

Action 𝑎
𝑎 = 0: Attack
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Mixed Strategies, Belief, and Expected Utility

• System of type  𝜃 has an expected utility of  𝑈! 𝜎! , 𝜎" 𝜃).

• Attacker that observes activity level  𝑚 and evidence  𝑒 has an expected 
utility of  ∑#∈% 𝜇" 𝜃 𝑚, 𝑒)𝑈" 𝜎" 𝜃,𝑚, 𝑒).

Type 𝜃
𝜃 = 0: Production 
𝜃 = 1: Honeypot

Attacker (“Receiver”)
Message𝑚
𝑚 = 0: Active
𝑚 = 1: Inactive

Network Defender (“Sender”)

Deception 
Program

Action 𝑎
𝑎 = 0: Attack
𝑎 = 1: Withdraw

Evidence 𝑒
𝑒 = 0: No alarm
𝑒 = 1: Alarm



Perfect Bayesian Nash Equilibrium
A PBNE is a strategy profile  (𝜎'∗, 𝜎)∗) and posterior beliefs  𝜇) 𝜃 𝑚, 𝑒) such that:

∀𝜃 ∈ Θ,

𝜎'∗ ∈ argmax *!∈,! 𝑈
' 𝜎', 𝜎)∗ 𝜃),

∀𝑚 ∈ 𝑀, 𝑒 ∈ 𝔼𝕍,

𝜎)∗ ∈ argmax *"∈," ∑-∈. 𝜇
) 𝜃 𝑚, 𝑒)𝑈) 𝜎) 𝜃,𝑚, 𝑒) ,

and

𝜇) 𝜃 𝑚, 𝑒) = / 0 -,1)*! 1 -)3(-)
∑#$∈& / 0 6-,1)*! 1 6-)3(6-)

,

when that fraction is defined.



Detector and Utility Meta-Parameters
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False-positive rate 𝛼(𝛼 = 0, 𝛽 = 0)

Quality 𝐽
Aggressi

ve
ness 

𝐺

(𝐺
=
0,
𝐽 =
0)

“Aggressive Detector”
A lot of false alarms (detect 

too quickly/aggressively)

“Conservative Detector”
A lot of miss detection

(detect too 
slowly/conservatively)

Utility Parameters:

Δ!" = 𝑢" 0,𝑚, 0 − 𝑢" 0,𝑚, 1

Δ#" = 𝑢" 1,𝑚, 1 − 𝑢" 1,𝑚, 0



Equilibrium Regions

𝑝(1) = 0 𝑝(1) = 1

(1 − 𝛽)Δ!"

1 − 𝛽 Δ!" + 1 − 𝛼 Δ#"
𝛼Δ!"

𝛼Δ!" + 𝛽Δ#"
𝛽Δ!"

𝛽Δ!" + 𝛼Δ#"
(1 − 𝛼)Δ!"

1 − 𝛼 Δ!" + 1 − 𝛽 Δ#"

Zero-Dominant Zero-Heavy Middle One-Heavy One-Dominant

𝛼Δ!"

𝛼Δ!" + 𝛽Δ#"
(1 − 𝛽)Δ!"

(1 − 𝛽)Δ!" + 1 − 𝛼 Δ#"
(1 − 𝛼)Δ!"

(1 − 𝛼)Δ!" + (1 − 𝛽)Δ#"
𝛽Δ!"

𝛽Δ!" + 𝛼Δ#"
𝛽 < 1 − 𝛼

(Conservative)

𝛽 > 1 − 𝛼
(Aggressive)

S Pool on 0 à R Plays 0
S Pool on 1 à R Plays 0

S Pool on 0 à R Plays 0
S Pool on 1 à R Plays 0

S Pool on 0 à R Plays 1
S Pool on 1 à R Plays 1

S Pool on 0 à R Plays 1
S Pool on 1 à R Plays 1

–
S Pool on 1 à R Plays 0

S Pool on 0 à R Plays 0
–

–
–

–
–

S Pool on 0 à R Plays 1
–

–
S Pool on 1 à R Plays 1



Partially-Separating Equilibria in the Middle Regime

Theorem (Aggressive Detectors). For 𝛽 > 1 − 𝛼, within the Middle regime, there 
exists a PBNE in which 

𝜎!∗ 𝑚 = 1 𝜃 = 0 = $%$&'-.

$%/($&/ '01
)(+)

+()(+)
−

$&/

$%/($&/
,

𝜎!∗ 𝑚 = 1 𝜃 = 1 = $%/

$%/($&/
− $%$&'0.

$%/($&/ '-1
+()(+)
)(+)

,

and
𝜎"∗ 𝑎 = 1 𝑚 = 0, 𝑒 = 0 = 0, 𝜎"∗ 𝑎 = 1 𝑚 = 0, 𝑒 = 1 = +

%-&
,

𝜎"∗ 𝑎 = 1 𝑚 = 1, 𝑒 = 0 = 1, 𝜎"∗ 𝑎 = 1 𝑚 = 1, 𝑒 = 1 = %-&(+
%-&

,

and the beliefs are computed by Bayes’ Law in all cases. Here  2𝒙 = 𝟏 − 𝒙.



Partially-Separating Equilibria in the Middle Regime

Theorem (Conservative Detectors). For 𝛽 < 1 − 𝛼, within the Middle regime, 
there exists a PBNE in which 

𝜎!∗ 𝑚 = 1 𝜃 = 0 = &/

&/(%/
− %&'-.

&/(%/ '01
)(+)

+()(+)
,

𝜎!∗ 𝑚 = 1 𝜃 = 1 = %&'0.

&/(%/ '-1
+()(+)
)(+)

− ./

&/(%/
,

and
𝜎"∗ 𝑎 = 1 𝑚 = 0, 𝑒 = 0 = +(%(&

/(%(&
, 𝜎"∗ 𝑎 = 1 𝑚 = 0, 𝑒 = 1 = 1,

𝜎"∗ 𝑎 = 1 𝑚 = 1, 𝑒 = 0 = +
/(%(&

, 𝜎"∗ 𝑎 = 1 𝑚 = 1, 𝑒 = 1 = 0,
and the beliefs are computed by Bayes’ Law in all cases. 



Partially-Separating 
Strategies for S

𝜃 = 1: “Reveal” 
honeypot (𝑚 = 1) as 

inactive wp 0.47.

𝜃 = 0: “Reveal” 
production (𝑚 = 0) as 

active wp 0.89.

Coincident lines: 
Pooling 

Equilibrium #1

Coincident lines: 
Pooling 

Equilibrium #2

Middle Regime: Partially Separating



Comparative Statics: Detector Quality 𝐽 = 𝛽 − 𝛼



Comparative Statics: Aggressiveness G = 𝛽 − (1 − 𝛼)



Truth Induction

Aggressive detectors induce a truth-telling convention, while 
conservative detectors induce a falsification convention.

Theorem (Truth Induction). Set  Δ2" = Δ3" . Within regimes that feature 
unique PBNE, for all  𝐽 ∈ [0,1] and  for any prior probability 𝑝(𝜃):

𝜏 𝐽, 𝐺, 𝑝 ≥ 3
4

for 𝐺 ∈ [0,1),

𝜏 𝐽, 𝐺, 𝑝 ≤ 3
4

for 𝐺 ∈ (−1,0],

where
𝜏 𝐽, 𝐺, 𝑝 ≜ ∑#∈{2,3} 𝑝(𝜃)𝜎!∗ 𝑚 = 𝜃 𝜃; 𝑝). 

Fraction of messages 𝑚 = 𝜃



The Eye of Providence



Offensive Deception



Hu Y, Zhu Q. Game-theoretic Neyman-Pearson detection to combat strategic evasion, in Proceedings of CDC 2022, arXiv preprint 
arXiv:2206.05276. 



Defensive Deception:
Taxonomy Based on Game Theoretic Principles
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Dynamic Deception Model: One-Sided Partially 
Observable Markov Stochastic Games
• Two-player zero-sum 
• Discounted infinite horizon 

Environment

𝒙𝒌

Action 𝒂𝟏𝒌

Observation 𝒚𝒌

Reward  -𝒓𝒌

with dynamics

𝚪

Action 𝒂𝟐𝒌

Reward 𝒓𝒌

Observation 𝒙𝒌

Horák K, Zhu Q, Bošanský B. Manipulating adversary’s belief: A dynamic game approach to deception by design for proactive network security. 
International Conference on Decision and Game Theory for Security 2017 Oct 23 (pp. 273-294). 



N
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22 2 2

N N N· · ·

• An initial state is drawn from 
the initial belief 𝑏$ ∈ Δ 𝑋 .

• P2 observes 𝑥$ , P1 observes 
𝑦$ .

• Players take simultaneous 
actions (𝑎%$ , 𝑎&$).

1 1 1

sub sub sub

• Nature decides the state 𝑥$'% and 

observation 𝑦$'% at 𝑘 + 1 according 

to transition kernel 

Γ($ ,*%$ ,*&$(𝑥
$'% , 𝑦$'%).



N

1 1

22 2 2

N N N· · ·

1 1 1

sub sub sub

• P1’s history 𝐻23: = 𝐴2×𝑌 3

• P2’s history  𝐻43: = 𝑋× 𝐴2×𝐴4×𝑌×𝑋 3

• Policy 𝜙53: 𝐻53 ↦ Δ(𝐴5)

• Only need to keep track of belief for 
stationary policies 

• 𝜙2
(7) ∈ Δ(𝐴2), 

• 𝜙4
(7): 𝑋 ↦ Δ(𝐴4)

• P1’s belief update under P2’s policy 𝜙4
(7):
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• Discounted-sum objective:  𝐿 = ∑3𝛽3𝑟3

• For zero-sum game: 

inf92su𝑝93𝐿 𝜙2, 𝜙4 = su𝑝93inf92𝐿(𝜙2, 𝜙4)

• Convex value function 𝑣∗ maps beliefs over the system state to the expected value.

• Algorithms: LP and HSVI.
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Application in

Network Security 

Manipulating Adversary’s Belief: Deception in Network Security 283

production facilities [15]. Our example network consists of three layers. The
outermost layer of the network (Layer 1) is directly exposed to the Internet via
demilitarized zones (DMZs) and provides less sensitive services that are used to
communicate with the customers and business partners, such as web or email
servers.

outside
of the network

less valuable assets more valuable assets

WWW, EMAIL DATABASE ACTUATORS

& SENSORS

Layer 1 Layer 2 Layer 3

Fig. 1. Network topology (attacker starts outside of the network and attempts to gain
access to the most valuable assets in the network)

More critical assets are located in the deeper layers of the network. In our
case, the second layer consists of data stores containing confidential data the loss
of which may have a severe impact on the company. The third layer is the most
critical one since it provides an access to physical devices, such as actuators and
sensors, the integrity of which is absolutely essential for the secure operation of
the facility. Breach of assets in the Layer 3 of the network may even pose a risk
of physical damage, such as in the case of the Stuxnet attack [7,8].

Attack Options. We assume that an attack is initiated from a computer out-
side of the network (xA = ∅). In this section we describe attacker’s actions (set of
actions AA) which he can use to acquire new privileges and penetrate deep into
the network and to cause damage to it. The attacker attempts to take control of a
system in Layer 1 (xA = layer1) and then escalates his privileges to take control
of the computers located deeper in the network (i.e. acquiring xA = layeri) by
compromising them (hence we refer to this action of the attacker as compromise).
At any point, the attacker can either wait or leverage the current access. Apart
from attempting to compromise a host in the next layer, he has two options:

The first option is to cause significant immediate damage, such as eliminating
a physical device in Layer 3 (having the attacker had access to it) – we refer
to this action as takedown. Such an action surely attracts the attention of the
defender and will lead to the detection of the attacker’s presence. Therefore, the
attacker is forced to quit the network and possibly repeat his attack later (hence
xA = ∅ and d = false as a result).

The second option is to cause smaller amount of damage while attempting
not to attract defender’s attention. The actions the attacker can use to this
purpose include, e.g., a stealthy exfiltration of data or a manipulation of the

• Defender has perfect information.

• Attacker has partial observation. 

• Defender manipulates the attacker’s 
belief to prevent him from succeeding.

[Horak, Zhu, Bosansky, GameSec 2017] 
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side of the network (xA = ∅). In this section we describe attacker’s actions (set of
actions AA) which he can use to acquire new privileges and penetrate deep into
the network and to cause damage to it. The attacker attempts to take control of a
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of the computers located deeper in the network (i.e. acquiring xA = layeri) by
compromising them (hence we refer to this action of the attacker as compromise).
At any point, the attacker can either wait or leverage the current access. Apart
from attempting to compromise a host in the next layer, he has two options:

The first option is to cause significant immediate damage, such as eliminating
a physical device in Layer 3 (having the attacker had access to it) – we refer
to this action as takedown. Such an action surely attracts the attention of the
defender and will lead to the detection of the attacker’s presence. Therefore, the
attacker is forced to quit the network and possibly repeat his attack later (hence
xA = ∅ and d = false as a result).

The second option is to cause smaller amount of damage while attempting
not to attract defender’s attention. The actions the attacker can use to this
purpose include, e.g., a stealthy exfiltration of data or a manipulation of the

• Possible network topologies 

• Attack vectors: 𝑋K = {∅, 𝐿𝑎𝑦𝑒𝑟L, 𝐿𝑎𝑦𝑒𝑟M, 𝐿𝑎𝑦𝑒𝑟N}

• Defense vectors: 𝑋O = {∅}, i.e., deploy no dynamic resources

• Detection states: detected or not. 
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the attacker using a transition system depicted in Fig. 2. The state space is
divided into two parts. In the upper half, the presence of the attacker in the net-
work has not yet been revealed by the IDS (d = false), therefore, the defender
cannot take active countermeasures yet. Triggering an IDS alert switches the
game states into the bottom part (d = true) and thus gives the defender an
opportunity to decide between engage and block actions.

compromise compromise compromise

exfiltrate exfiltrate exfiltrate

compromise

exfiltrate

compromise

exfiltrate exfiltrate
engage

engage

engage

engage

engage

any action
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xA = ∅

Fig. 2. Transition system of a partially observable stochastic game representing attack
on the network from Fig. 1. The attacker can use the takedown action in every layer.
The wait action of the attacker has been omitted for clarity and is always applicable.

The arrows in the diagram represent individual transitions in the game (i.e.
represent the transition function T ). We assume that the transitions in the game
are deterministic, except for the transitions between d = false and d = true
that are defined using ptrig. The attacker never receives an observation that
would reveal him some information about the detection state d (i.e. he only gets
to know the new attack vector xA).

If the attacker uses compromise action, he penetrates deeper in the network.
If he opts for exfiltrate, he stays in the current layer of the network while
possibly gaining access to confidential information. And finally, he can decide to
do the immediate damage by the takedown action at any time. In such a case he
gets detected and thus returns to the initial state, outside of the network. The
defender can stop all this from happening by taking the block action (had he
detected the attacker) when the defender is pushed out of the network as well.

The attacker knows his current attack vector xA and can identify the layer he
has penetrated (i.e. he knows the “column” of the transition system where he is
located), but he does not know whether he has been detected or not (i.e. whether

Attacker’s actions
• Compromise: Go deeper.

• Exfiltrate: Stay and gain access to 
confidential info.

• Takedown: Incur immediate damage 
and get detected

Observable to attacker

Not observable to attacker

Defender’s Action
• If not detected, defender does nothing. 

• If detected, defender’s action
• Block: remove the attacker
• Engage: present falsified data to the 

attacker



37

• Optimal defense strategy:
• Engage the attacker who believes that he has not been detected
• Block others

• Demise of the greedy:
• The blocking threshold increases when the attacker is closer to the goal of deeper layer penetration.
• Attacker cares less about being detected when getting closer to the asset.
• Less stringent on the belief for engagement when closer to the asset.  

288 K. Horák et al.

the deception believable, and the attacker would rather cause the damage and
forfeit his current attack attempt, than battle the deception.

We represent the optimal defensive strategy as a mapping from the current
position of the attacker (i.e. the layer of the network he penetrated) and his belief
about being detected (and thus being deceived). Since the defender has only two
actions available, we express the probability of playing the engage action only
(had he succeeded in detecting the attacker), σD(i, b), where i ∈ {1, 2, 3} is the
current layer and b ∈ [0, 1] is the attacker’s belief about the detection state.
Note that σD(i, b) corresponds to πD((n, layeri, xD, true), engage), where πD

is the minimax solution of Eq. (6) evaluated for v∗(b̂), b̂(n, layeri, xD, true) = b,
b̂(n, layeri, xD, false) = 1 − b. The optimal defense strategy σD(i, b) for each
of the layers is depicted in Fig. 3.

Fig. 3. Optimal defense strategy σD for the network from Fig. 1. The optimal strategy
of the defender is randomized and depends on the current position of the attacker (the
layer he penetrated) and his belief about the detection state.

The optimal defense strategy prescribes the defender to always keep the
attacker in the network when the attacker is highly confident that he has not been
detected yet. In such a situation, the attacker will opt for data exfiltration, which
we can prevent, e.g. by providing him with fake data. At a certain point, however,
the attacker starts being worried about being detected and starts considering to
cause immediate damage, incur a high loss to the defender and leave the network
(i.e. use the takedown action). The defender has to react to this development
and think about blocking the attacker by decreasing the probability of keeping
the attacker in the network.

Remark 2 (Demise of the greedy). We can observe that the closer the attacker
is to his primary goals (or at least the closer he thinks to be), the less concerned
he is about the fact that he might be detected and the more greedy he is about
realizing his intents. It is thus easier for the defender to deceive the attacker in
such a situation. This is caused by the fact that the attacker must have put more
effort to get into deeper layers of the network and the damage he can possibly

Blocking threshold

When attacker’s confidence is 
below the threshold, the 

defender engages with prob. 1. 



• Optimal strategy

• Stabilize the attacker’s belief at around 0.5. 

• Attacker’s tradeoff of data exfiltration or being manipulated. 
38
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Fig. 4. Evolution of attacker’s belief over time. If we block the attacker immediately
after detection, he remains highly confident that we cannot employ deceptive actions
which allows him to perform long-term data exfiltration. If we always attempt to deceive
the attacker by engaging him, he realizes that he likely faces a deception and decides to
cause immediate damage – which cannot be prevented by the deceptive engage action.

deviates from the assumed attack plan and opts for causing immediate damage
and leaving the network temporarily (before launching a new attack).

The optimal defense strategy, on the other hand, stabilizes attacker’s belief
about being detected at the value of b = 0.4968. This is the right belief where
the attacker still thinks that it is worth attempting to cause a long term damage
by data exfiltration, despite being vulnerable to defender’s deceptive attempts.

Remark 3 (Curse of exclusion). This result draws one important conclusion
about the use of deception to manipulate attacker’s belief. The decision to
exclude the attacker from the network (or even more importantly the decision
not to block him) leaks a valuable piece of information to the attacker. If we
do not think about blocking the attacker in a strategic way, the attacker can
capitalize on getting this information to devise a powerful attack plan. We have
to weigh the use of stealthy and non-stealthy defensive actions carefully not to
alert the attacker to the use of deception. The optimal defensive strategy (unlike
the always-block and always-engage strategies) achieves a belief point where no
further information leaks to the attacker and the malicious effects of attacker’s
actions are minimized.

5.4 Engaging the Attacker

In Sect. 5.3 we have shown that the common practice in incident response deploy-
ments of blocking the attacker immediately after detection is susceptible to severe
drawbacks. We proposed an alternative strategy, based on a game-theoretic
model, that postpones the decision to block the attacker to minimize the long-
term damage to the network. The key motivation for using this strategy is that by
anticipating malicious actions of the attacker, we can minimize negative impacts
of his actions and delay his progress. On the other hand, excluding the attacker

Always blocking strategy

• Temporary solution: attackers 
can reenter later.

• Curse of exclusion: no 
blocking = not detected yet.

Always engaging strategy

• Too good to be true: the 
attacker realizes the 
engagement. 

• A bird in the hand is worth 
two in the bush: the attacker 
chooses immediate damage. 
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Robotic Deception

Evader

Pursuer

Real 
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Target

• The evader aims to reach his real target and keep a distance from the pursuer.

• The evader does not want to reveal his real target. 

• The pursuer goes after the evader.



Evader

Pursuer

Real 
Target

Misleading 
Target



<latexit sha1_base64="I8c3g9HbowW2D55dVw2JH0kHFrs=">AAACInicbVDLSgMxFM3Ud31VXboJFqGilJkiPhaC6MZlBVuFdqZk0kwbJvMguaMtQ7/Fjb/ixoWirgQ/xkxbRKsHwj2ccy8397ix4ApM88PITU3PzM7NL+QXl5ZXVgtr63UVJZKyGo1EJG9copjgIasBB8FuYslI4Ap27frnmX99y6TiUXgF/ZjZAemE3OOUgJZaheOek/q71uAEe45f6jn+HiYta1QqWWlCl4GWvlllD985/k6+VSiaZXMI/JdYY1JEY1RbhbdmO6JJwEKggijVsMwY7JRI4FSwQb6ZKBYT6pMOa2gakoApOx2eOMDbWmljL5L6hYCH6s+JlARK9QNXdwYEumrSy8T/vEYC3pGd8jBOgIV0tMhLBIYIZ3nhNpeMguhrQqjk+q+YdokkFHSqWQjW5Ml/Sb1Stg7Klcv94unZOI55tIm2UAlZ6BCdogtURTVE0T16RM/oxXgwnoxX433UmjPGMxvoF4zPLwdUoN8=</latexit>

xk+1 = fk(xk, ak1 , a
k
2 , ✓1, ✓2, w

k)

<latexit sha1_base64="5GArnQRa2o2jNhQCPRRj7z5bD80="></latexit>

E✓�i,wJi(x,a1,a2, ✓1, ✓2)

Evader

Pursuer

Real 
Target

Misleading 
Target



Evader

Pursuer

Real 
Target

Misleading 
Target



Solution Concept (Informal, (Huang and Zhu, 2021))

• Sequential Rationality: Control u∗,0:K−1 is sequential rational for each 
player i under his belief sequence b∗,0:K−1 .

• Belief consistency: Each player i’s belief sequence b∗,0:K−1 is consistent 
with rationality under control u∗,0:K−1 .

Huang L, Zhu Q. A dynamic game framework for rational and persistent robot deception with an application to deceptive pursuit-evasion. IEEE 
Transactions on Automation Science and Engineering. 2021.



45





Future Challenges: Learning-Based Solutions



Li T, Lei H, Zhu Q. Self-Adaptive Driving in Nonstationary Environments through Conjectural Online Lookahead Adaptation. arXiv preprint arXiv:2210.03209. 2022 Oct 6. 





Future Challenges: Human 







[Huang and Zhu, 2023] 



Future Challenges: Mechanism Design 





Huang L, Zhu Q. RADAMS: Resilient and adaptive alert and attention management strategy against informational denial-of-service (IDoS) attacks. Computers & Security. 
2022 Oct 1;121:102844. 



Huang L, Zhu Q. Duplicity games for deception design with an application to insider threat mitigation. IEEE Transactions on Information Forensics and Security. 2021 
Oct 8;16:4843-56.
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