

Efficient Inference at the Edge TECoSA Seminar

Center for Trustworthy Edge Computing Systems and Applications KTH, Stockholm

Axel Jantsch

November, 3, 2022

Power Consumption in Inference

VGG16 applied to the ImageNet data set based on published papers.

Power Consumption in Inference

Object detection on the NCS2 platform; own measurements.

What is Special About "Embedded"?

Resource limitations

	Embedded	Data center
Computation [flop]	$30 - 1800 \cdot 10^{12}$	$86\cdot 10^{18}$
Memory [bit]	10^{10}	10^{15}
Power [W]	5-100	$10^3 - 10^6$
Energy [Wh]	48-1000	$200\cdot 10^6$

Computation Embedded refers to an Nvidia Jetson Nano running 1 min and 1 hour, respectively. Computation server refers to the computation needed for the 40 day experiment with AlphaGo Zero Energy embedded refers to a mobile phone and to a car battery, respectively. Energy server refers to the 40 day experiment for AlphaGo Zero.

Design Space

DNN Choices

Convolutional layers Filter kernels Number of filters Pooling layers Filter shape Stride Fully connected layer Number of layers Regularization

Mapping Choices

Neuron pruning
Data type selection
Approximation
Retraining
Connection pruning
Weight sparsifying
Regularization
etc.

Platform Choices Platform Selection

Reconfiguration
Batch processing
Deep pipelining
Resource reuse
Hierarchical control
Processing unit selection
Memory allocation
Memory reuse
etc.

Outline

- 1 Estimation
- 2 Power Profiling
- 3 Traffic Light Controller Case Study
- 4 Shunt Connections
- **5** Ragweed Detection
- **6** DNN Partitioning for Inference

Outline

- 1 Estimation
- 2 Power Profiling
- 3 Traffic Light Controller Case Study
- 4 Shunt Connections
- **6** Ragweed Detection
- **6** DNN Partitioning for Inference

ESTIMATION

Estimation

- Two leading performance estimation tools: ANNETTE and Blackthorn
- For NCS2, Xilinx FPGA, and Jetson
- Combine analytic, statistical model and partial measurements

M. Wess, M. Ivanov, C. Unger, A. Nookala, A. Wendt, and A. Jantsch. "ANNETTE: Accurate Neural Network Execution Time Estimation With Stacked Models". In: IEEE Access 9 (2021), pages 3545–3556

Martin Lechner and Axel Jantsch. "Blackthorn: Latency Estimation Framework for CNNs on Embedded Nvidia Platforms". In: IEEE Access (2021)

Inference Run Time Estimation

Assumption:

- Inference time as a function of problem size is a combination of step and linear functions due to limited parallel resources.
- Few measurement points are required

Example:

- Single convolutional layer sweep
- 32x32x64 with k filter and kernel size 3

Iterative Refinement

Iterative Refinement

Iterative Refinement

2D Example - Error

Slice through 2D plane at no of filters k = 1024

$$f(d_{\text{in}}, k)$$

= 0.1418 + $\lfloor \frac{d_{\text{in}} - 1}{8} \rfloor$ 0.0106
+ $\lfloor \frac{k - 1}{32} \left(0.044 + \lfloor \frac{d_{\text{in}} - 1}{8} \rfloor$ 0.0121 $)$

$$f(d_{\mathsf{in}}, 1024)$$

= 1.5058 + $\lfloor \frac{d_{\mathsf{in}} - 1}{8} \rfloor$ 0.3857

2D Example - Error

Slice through 2D plane at nr of channels $d_{\rm in}=128$

$$f(d_{\text{in}}, k)$$

= 0.1418 + $\lfloor \frac{d_{\text{in}} - 1}{8} \rfloor$ 0.0106
+ $\lfloor \frac{k - 1}{32} \left(0.044 + \lfloor \frac{d_{\text{in}} - 1}{8} \rfloor$ 0.0121 $\right)$

$$f(128, k) = 0.3008 + \lfloor \frac{k-1}{32} \rfloor 0.2255$$

Latency Estimation

Network	Estimation Error [%]			
Network	NCS2	ZCU102	Jetson	Jetson
			Nano	TX2
YoloV3	4.1	3.2	-	-
MobileNetV2	4.3	4.2	3.6	4.2
ResNet50	8.2	1.2	2.4	2.8
FPN Net	9.3	7.5	-	-
AlexNet	5.2	4.8	5.5	6.6
VGG16	11.3	6.2	0.5	1.4

Summary

• Exploiting the discrete nature of HW resources

- Exploiting the discrete nature of HW resources
- Fast estimation function for latency based on linear and step functions

- Exploiting the discrete nature of HW resources
- Fast estimation function for latency based on linear and step functions
- Semi-automatic derivation of estimation for a new platform

- Exploiting the discrete nature of HW resources
- Fast estimation function for latency based on linear and step functions
- Semi-automatic derivation of estimation for a new platform
- Results for several platforms are robust

Outline

- 1 Estimation
- 2 Power Profiling
- 3 Traffic Light Controller Case Study
- 4 Shunt Connections
- **5** Ragweed Detection
- **6** DNN Partitioning for Inference

POWER PROFILING

Experimental Setup

MobileNetV2 on NCS2 and Coral Edge TPU

Power and Performance Profiling

Yolov3-tiny power profile on NCS2

MobileNetV2 on NCS2 and Coral Edge TPU

The error in % with respect to 500 kHz sampling frequency.

MobileNetV2 on NCS2 and Coral Edge TPU

Energy versus number of operations.

MobileNetV2 on NCS2 and Coral Edge TPU; Energy versus latency.

Summary

• NCS2, Edge TPU and Nvidia platforms

- NCS2, Edge TPU and Nvidia platforms
- Detailed, per layer latency and power profiling

- NCS2, Edge TPU and Nvidia platforms
- Detailed, per layer latency and power profiling
- Hardware settings have significant influence

- NCS2, Edge TPU and Nvidia platforms
- Detailed, per layer latency and power profiling
- Hardware settings have significant influence
- 100 kHz sampling frequency is required for 5% accuracy

- NCS2, Edge TPU and Nvidia platforms
- Detailed, per layer latency and power profiling
- Hardware settings have significant influence
- 100 kHz sampling frequency is required for 5 % accuracy
- Number of operations is a poor predictor for latency and energy

- NCS2, Edge TPU and Nvidia platforms
- Detailed, per layer latency and power profiling
- Hardware settings have significant influence
- 100 kHz sampling frequency is required for 5 % accuracy
- Number of operations is a poor predictor for latency and energy
- Latency and energy usage correlate fairly well in total

- NCS2, Edge TPU and Nvidia platforms
- Detailed, per layer latency and power profiling
- Hardware settings have significant influence
- $\bullet~100\,\text{kHz}$ sampling frequency is required for $5\,\%$ accuracy
- Number of operations is a poor predictor for latency and energy
- Latency and energy usage correlate fairly well in total
- Per-layer power analysis gives more insight in HW inefficiencies

Outline

- 1 Estimation
- 2 Power Profiling
- 3 Traffic Light Controller Case Study
- 4 Shunt Connections
- **6** Ragweed Detection
- **6** DNN Partitioning for Inference

TRAFFIC LIGHT CONTROLLER CASE STUDY

Traffic Light Controller

Data set:

training: 19087 images

positive examples 47%

validation: 13184

positive examples 26%

• Resolution: 1280×720

Issue: Validation 4h/network

 \rightarrow validation set: 1319

Platforms under Study

Name	Performance [T op/s]	Memory [GB]	Power [W]	Cost [€]
NVIDIA Xavier AGX	32	16	10-30	800
NVIDIA Jetson TX2	1.3	4	7.5 - 15	260
NVIDIA Jetson Nano	0.5	4	5-10	120
Intel NCS2	1	0.5	5	80
Intel NUC CPU (i7-8650U)	22.4	32	15	600
Intel NUC GPU (Intel UHD 620)	8.0	32	15	600
Tesla V100	130	32	250	>1000

Networks under Study

Name	Framework used	No of parameters (10^6)
ssdmobilenetv2fpnlite	Tensorflow	2.8
efficientdet-d0	Tensorflow	3.9
ssdmobilenetv2	Tensorflow	4.5
yolov5s	Pytorch	7.0
yolov3tiny	Pytorch	8.6
yolov5m	Pytorch	21.0
yolov5l	Pytorch	46.6
ssdresnet50v1fpn	Tensorflow	50.7
yolov3	Pytorch	61.4
yolov3spp	Pytorch	62.5
ssdresnet101v1fpn	Tensorflow	69.7
ssdresnet152v1fpn	Tensorflow	85.3
volov5x	Pytorch	87.1

Solutions under cost constraints

 $\begin{array}{l} \text{latency} \\ \leq 100 \, \text{ms} \\ \text{and} \\ \text{mAP50} \\ > 0.9. \end{array}$

Solutions under cost constraints

 $\begin{array}{l} \text{latency} \\ \leq 100 \, \text{ms} \\ \text{and} \\ \text{mAP50} \\ > 0.9. \end{array}$

Solutions under cost constraints

 $\begin{array}{l} \text{latency} \\ \leq 100 \, \text{ms} \\ \text{and} \\ \text{mAP50} \\ > 0.9. \end{array}$

Impact of resolution and quantization on the Intel NUC platform

Impact of resolution and quantization on the Nvidia platform

SSD MobileNet v2 FPNLite

Yolo v5 small

Summary

• Yolo v5s is the most suitable network;

- Yolo v5s is the most suitable network;
- Nvidia Jetson Nano and TX2 are most suitable platforms

- Yolo v5s is the most suitable network;
- Nvidia Jetson Nano and TX2 are most suitable platforms
- Yolo v5m and MobileNetV2 are reasonable networks;

- Yolo v5s is the most suitable network;
- Nvidia Jetson Nano and TX2 are most suitable platforms
- Yolo v5m and MobileNetV2 are reasonable networks;
- IntelNUC GPU, IntelNUC CPU are reasonable platforms.

- Yolo v5s is the most suitable network;
- Nvidia Jetson Nano and TX2 are most suitable platforms
- Yolo v5m and MobileNetV2 are reasonable networks;
- IntelNUC GPU, IntelNUC CPU are reasonable platforms.
- Latency depends linear on image resolution

- Yolo v5s is the most suitable network;
- Nvidia Jetson Nano and TX2 are most suitable platforms
- Yolo v5m and MobileNetV2 are reasonable networks;
- IntelNUC GPU, IntelNUC CPU are reasonable platforms.
- Latency depends linear on image resolution
- FP16 quantization is a sweet spot compared to FP32 and INT8

Outline

- 1 Estimation
- 2 Power Profiling
- 3 Traffic Light Controller Case Study
- 4 Shunt Connections
- **6** Ragweed Detection
- **6** DNN Partitioning for Inference

SHUNT CONNECTIONS

Shunt Architecture

Brijraj Singh, Durga Toshniwal, and Sharan Kumar Allur. "Shunt connection: An intelligent skipping of contiguous blocks for optimizing MobileNet-V2". In: Neural Networks 118 (2019), pages 192–203

Bernhard Haas, Alexander Wendt, Axel Jantsch, and Matthias Wess. "Neural Network Compression Through Shunt Connections and Knowledge Distillation for Semantic Segmentation Problems". In: 17th International Conference on Artificial Intelligence Applications and Innovations (AIAI).

June 2021

Shunt Architecture on Classification **N**3 MobilNet

Block ID	MAdds	KQ CIFAR10	KQ CIFAR100
0	918k	-	-
1	584k	-	-
2	588k	0.12	0.25
3	465k	-	-
4	683k	0.13	0.54
5	683k	0.06	0.16
6	339k	0.02	0.09
7	339k	0.01	0.10
8	400k	-	-
9	599k	0.03	0.24
10	599k	0.03	0.15
Head	567k	-	-
	∑ 6.8M		
flops	reduction	\sim 42%	$\sim 31\%$

Shunt Architecture on Classification

	Acc. CIFAR10 [%]	Acc. CIFAR100 [%]
Original model	91.93	67.10
Shunt-inserted models	79.78	53.56
Fine-tuned models with shunt		
Standard	88.09	64.63
Partial model freezing	85.66 (-2.43)	60.04 (-4.59)
Knowledge distillation (T=5, λ =2)	91.36 (+3.27)	67.54 (+2.91)

Shunt Architecture on Segmentation

- MobilNet V3 Small Segmentation architecture
- Cityscapes data set

Block ID	MAdds	KQ
0	227 M	-
1	53 M	-
2	230 M	-
3	166 M	-
4	128 M	0.13
5	211 M	0.15
6	211 M	-
7	114 M	0.20
8	146 M	-
9	160 M	0.20
10	75 M	0.19
Head	247 M	-
	Σ 2.0 B	

Shunt Architecture on Segmentation

Reference mIoU: 59.6

	$7\text{-}10\text{-}\mathrm{Arch4}$	$5\text{-}10\text{-}\mathrm{Arch1}$	4-10-Arch1
MAdds	-15%	-28%	-39%
NCS2	111 ms (-12.6%)	98 ms (-22.8%)	92 ms (-27.6%)
Shunt-inserted models -	- mIoU: 34.84	37.97	35.13
FINE-TUNED MODELS	WITH STANDARD S	SHUNT - mIoU:	
Standard	56.52	54.91	51.83
Knowledge distillation	56.03 (-0.49)	55.98 (+1.07)	51.14 (-0.69)

www.ict.tuwien.ac.at

Shunt Architecture on Segmentation

Depth Multiplier: built in parameter of MobileNet for controlling the number of channels.

Shunt Connection - Summary

Summary

• Shunt connection is effective to decrease model size

Shunt Connection - Summary

- Shunt connection is effective to decrease model size
- Knowledge Quotient for identifying promising skip connections

Shunt Connection - Summary

- Shunt connection is effective to decrease model size
- Knowledge Quotient for identifying promising skip connections
- Knowledge distillation for training the replacing shunt block

Outline

- 1 Estimation
- 2 Power Profiling
- 3 Traffic Light Controller Case Study
- 4 Shunt Connections
- **5** Ragweed Detection
- **6** DNN Partitioning for Inference

RAGWEED DETECTION

Ragweed Invasion

Scenarios

- S1: to detect small ragweed plants that are 10 cm² in size.
 - \Rightarrow Ground Sampling Distance GSD = $0.1\,\mathrm{cm/pixel}$
- S2: to detect large ragweed 1 m² in size.
 - $\Rightarrow \mathsf{GSD} = 1\,\mathsf{cm/pixel}$

Scenario		S1			S2	
Drone	DJI	DJI	Wingtra	DJI	DJI	Wingtra
	Phantom	Matrice	One	Phantom	Matrice	One
	Ef	fficiency M	/letrics			
Groundwidth [m/img]	5.47	8.19	5.46	54.72	81.92	54.56
Groundlength [m/img]	3.65	5.46	3.63	36.48	54.60	36.32
Ground area [km²/flight]	0.2	0.62	0.31	1.97	6.22	3.09
Flights per km ²	5.08	1.61	3.24	0.51	0.16	0.32
Time [h/km²]	2.54	1.48	3.19	0.26	0.15	0.31
Costs [EUR/km²]	152.3	176.9	145.6	15.2	17.7	14.6
	Optim	al Flight I	Parameter	s		
Altitude [m]	3.65	11.41	4.7	36.48	114.09	47.03
Speed [m/s]	20	23	16	20	23	16
Images per flight	9,869	13,902	15,595	987	1,391	1,560
Framerate [images/s]	5.48	4.21	4.41	0.55	0.42	0.44

Segmentation for Ragweed Identification

- Network: Deeplab V3+, based on MobileNet V3, with several layers modified
- Pretrained on Cityscapes dataset
- Trained with drone based recorded image set: 130 minutes of video data, height:
 2.5 4m
 - 971 images, 960×1080 pixel
- Platform: Nvidia Jetson TX2
- Optimizations: Shunt connections
- Tensor RT Optimization

Segmentation accuracy

	mloU			
Resolution	dlv3	dlv3s	dlv3trt	dlv3trts
961 × 541	0.000	0.625		0.625
1921×1081	0.670	0.695	0.634	0.695

dlv3 DeepLab V3 based reference model
dlv3s dlv3 with shunt connection
dlv3trt dlv3 optimized with Tensor RT framework
dlv3trts dlv3 optimized with Tensor RT framework and with shunt connection

Latency vs. Accuracy

56

Summary

 Drone based detection is cost efficient
 5-50 x more cost efficient, 8-100x more time efficient than manual methods

- Drone based detection is cost efficient
 5-50 x more cost efficient, 8-100x more time efficient than manual methods
- Segmentation is superior over object detection

- Drone based detection is cost efficient
 5-50 x more cost efficient, 8-100x more time efficient than manual methods
- Segmentation is superior over object detection
- DeepLabV3+ is a suitable base network

- Drone based detection is cost efficient
 5-50 x more cost efficient, 8-100x more time efficient than manual methods
- Segmentation is superior over object detection
- DeepLabV3+ is a suitable base network
- Nvidia TX2 is a reasonable platform

Outline

- 1 Estimation
- 2 Power Profiling
- 3 Traffic Light Controller Case Study
- 4 Shunt Connections
- **6** Ragweed Detection
- **6** DNN Partitioning for Inference

DNN PARTITIONING FOR INFERENCE

Partitioned DNNs

Partitioning Methodology

Methodology

- Energy and delay model
- Quantization and compression at partitioning point
- Selecting the partitioning point

Energy Model

$$E_{\text{Node}} = \sum_{i=1}^{j} (E_P(d_{i-1}, t_i, P_P)) + E_C(c_j, C_C)$$

*E*_{Node} Energy spent on the IoT node

i Partitioning point

DNN layers

 t_i Computation in layer i

 d_{i-i} Amount of input data for layer i

 c_j — Amount of data at partitioning point j

*E*_P Processing energy

 E_C Communication energy

 P_P IoT Node platform

Silvia Krug and Mattias O'Nils. "Modeling and comparison of delay and energy cost of iot data transfers". In: IEEE Access 7 (2019), pages 58654–58675

Quantization and Compression

Quantization

$$d = \left\lfloor \frac{f - S}{M - S} \times 2^{b - 1} \right\rfloor$$

$$S = \left(\frac{M+m}{2}\right)$$

m

Quantized data $b \in [1 \cdots 8]$ Resolution in bits data to be quantized Maximum of the value range of f Minimum of the value range of f Mean of all f

After quantization, the data is compressed with the zip algorithms.

Selection of Partitioning Point

- Candidate points have low data volume
- For each candidate point
 - Quantization and compression
 - Retraining
- Best point according to constraints and optimization criteria is selected.

Wheel Chair Steering Case Study

Cristian Vilar Giménez, Silvia Krug, Faisal Z. Qureshi, and Mattias O'Nils. "Evaluation of 2D-/3D-Feet-Detection Methods for Semi-Autonomous Powered Wheelchair Navigation". In: Journal of Imaging 7.12 (2021)

TinyYolo V3

DNN Partitioning - Summary

Summary

• Effective DNN partitioning is feasible

DNN Partitioning - Summary

- Effective DNN partitioning is feasible
- DNN partitioning opens a considerable design space for DNN based IoT applications

DNN Partitioning - Summary

- Effective DNN partitioning is feasible
- DNN partitioning opens a considerable design space for DNN based IoT applications
- Next steps is to explore more aggressive DNN adaptions for partitioning

Results, publications, demos, code on

eml.ict.tuwien.ac.at

¿ Questions ?

References I

- [1] Bernhard Haas, Alexander Wendt, Axel Jantsch, and Matthias Wess. "Neural Network Compression Through Shunt Connections and Knowledge Distillation for Semantic Segmentation Problems". In: 17th International Conference on Artificial Intelligence Applications and Innovations (AIAI). June 2021.
- [2] Irida Shallari, Isaac Sánchez Leal, Silvia Krug, Axel Jantsch, and Mattias O'Nils. "Design space exploration on IoT node: Trade-offs in processing and communication". In: IEEE Access (2021).
- [3] M. Wess, M. Ivanov, C. Unger, A. Nookala, A. Wendt, and A. Jantsch. "ANNETTE: Accurate Neural Network Execution Time Estimation With Stacked Models". In: IEEE Access 9 (2021), pages 3545–3556.
- [4] Martin Lechner and Axel Jantsch. "Blackthorn: Latency Estimation Framework for CNNs on Embedded Nvidia Platforms". In: *IEEE Access* (2021).
- [5] Cristian Vilar Giménez, Silvia Krug, Faisal Z. Qureshi, and Mattias O'Nils. "Evaluation of 2D-/3D-Feet-Detection Methods for Semi-Autonomous Powered Wheelchair Navigation". In: Journal of Imaging 7.12 (2021).
- [6] Silvia Krug and Mattias O'Nils. "Modeling and comparison of delay and energy cost of iot data transfers". In: *IEEE Access* 7 (2019), pages 58654–58675.
- [7] Brijraj Singh, Durga Toshniwal, and Sharan Kumar Allur. "Shunt connection: An intelligent skipping of contiguous blocks for optimizing MobileNet-V2". In: Neural Networks 118 (2019), pages 192–203.

