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What is Special About “Embedded”?

Resource limitations

Embedded Data center
Computation [flop] 30 —1800-10'2  86-10%®
Memory [bit] 1010 1015
Power [W] 5-100 103 — 10°
Energy [Wh] 48-1000 200 - 106

Computation Embedded refers to an Nvidia Jetson Nano running 1 min and 1 hour, respectively.
Computation server refers to the computation needed for the 40 day experiment with AlphaGo Zero
Energy embedded refers to a mobile phone and to a car battery, respectively.

Energy server refers to the 40 day experiment for AlphaGo Zero.
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ARM NN

Design Space

Nvidia Turing

DNN Choices

Convolutional layers
Filter kernels
Number of filters
Pooling layers

Filter shape

Stride

Fully connected layer
Number of layers
Regularization

€etc.

-

Mapping Choices

Neuron pruning
Datatype selection
Approximation
Retraining
Connection pruning
Weight sparsifying
Regularization

€tc.

Platform Choices

Platform Selection
Reconfiguration

Batch processing

Deep pipelining
Resource reuse
Hierarchical control
Processing unit selection
Memory alocation

Memory reuse
etc.
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Estimation

® Two leading TommTe T ressurements| I2ERITA
f ti ti Benchmark Tool Mapping Hardware
performance estimation (1)|_ e Toolchain [l Platform
tools: ANNETTE and T T
Blackthorn | Model Generator | Platform B
. T 4 Mapping Hardware
e For NCS2, Xilinx v Toolchain il Platform
FPGA, and Jetson o ——————— ]
(2) Estimation Tool |
® Combine analytic
Lo yHe, | | Platform Model A Platform Model B |
statistical model and ‘ Mapping Hardware Mapping GEICIVEICH | |
partial measurements ‘ Model Model Model Model |

M. Wess, M. Ivanov, C. Unger, A. Nookala, A. Wendt, and A. Jantsch. “ANNETTE: Accurate Neural Network Execution Time Estimation With
Stacked Models”. In: |EEE Access 9 (2021), pages 3545-3556

Martin Lechner and Axel Jantsch. “Blackthorn: Latency Estimation Framework for CNNs on Embedded Nvidia Platforms”. In: /EEE Access (2021)



Inference Run Time Estimation

Assumption:

® |nference time as a function
of problem size is a
combination of step and
linear functions due to limited
parallel resources.

® Few measurement points are
required
Example:
® Single convolutional layer
sweep
® 32x32x64 with k filter and
kernel size 3
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2D Example - Error

Slice through 2D plane at no of filters k = 1024
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2D Example - Error

Slice through 2D plane at nr of channels dj, = 128

F(dhn, K)
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Latency Estimation

Network Estimation Error [%]
NCS2 | ZCU102 | Jetson | Jetson
Nano TX2
YoloV3 4.1 3.2 - -
MobileNetV?2 4.3 4.2 3.6 4.2
ResNet50 8.2 1.2 2.4 2.8
FPN Net 9.3 7.5 - -
AlexNet 5.2 4.8 5.5 6.6
VGG16 11.3 6.2 0.5 1.4
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Latency Estimation - Summary

Summary
® Exploiting the discrete nature of HW resources

® Fast estimation function for latency based on linear and
step functions

® Semi-automatic derivation of estimation for a new
platform

® Results for several platforms are robust
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Experimental Setup
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Power and Performance Profiling
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Energy versus number of
operations.
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Power and Performance Profiling - Summary

Summary
e NCS2, Edge TPU and Nvidia platforms

® Detailed, per layer latency and power profiling
® Hardware settings have significant influence
® 100 kHz sampling frequency is required for 5% accuracy

® Number of operations is a poor predictor for
latency and energy

e Latency and energy usage correlate fairly well in
total

® Per-layer power analysis gives more insight in HW
inefficiencies ) 2)
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TRAFFIC LIGHT CONTROLLER CASE
STUDY



raffic Light Controller

Data set:
® training: 19087 images
® positive examples 47%
® validation: 13184
® positive examples 26%
® Resolution: 1280x720

® |ssue: Validation 4h/network
— validation set: 1319



Platforms under Study

Name Performance  Memory Power Cost
[T op/s] [GB] (W] [€]
NVIDIA Xavier AGX 32 16 10-30 800
NVIDIA Jetson TX2 1.3 4 7.5-15 260
NVIDIA Jetson Nano 0.5 4 5-10 120
Intel NCS2 1 0.5 5 80
Intel NUC CPU (i7-8650U) 22.4 32 15 600
Intel NUC GPU (Intel UHD 620) 0.8 32 15 600
Tesla V100 130 32 250 >1000



Networks under Study

Name Framework used No of parameters
(10°)
ssdmobilenetv2fpnlite ~ Tensorflow 2.8
efficientdet-d0 Tensorflow 3.9
ssdmobilenetv2 Tensorflow 4.5
yolovbs Pytorch 7.0
yolov3tiny Pytorch 8.6
yolovbm Pytorch 21.0
yolov5bl Pytorch 46.6
ssdresnet50v1fpn Tensorflow 50.7
yolov3 Pytorch 61.4
yolov3spp Pytorch 62.5
ssdresnet101v1fpn Tensorflow 69.7
ssdresnet152v1fpn Tensorflow 85.3
yolovbx Pytorch 87.1
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Impact of resolution and quantization on the Intel NUC platform
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Impact of resolution and quantization on the Nvidia platform
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Traffic Light Case Study - Summary
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Traffic Light Case Study - Summary

Summary

® Yolo v5s is the most suitable network;

® Nvidia Jetson Nano and TX2 are most suitable
platforms

® Yolo vbm and MobileNetV2 are reasonable networks;

® IntelNUC GPU, IntelNUC CPU are reasonable
platforms.

® | atency depends linear on image resolution

® FP16 quantization is a sweet spot compared to FP32
and INT8
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SHUNT CONNECTIONS



24
input

Shunt Architecture

> p— 3 pr— 3
192 192 W
dw conv  1x1 conv 1x1 conv  dw conv Ix1
. conv
192 &
1x1 conv
SHUNT

1x1 convolution

Depthwise seperable convolution
O BatchNorm

ReLu Activation

Brijraj Singh, Durga Toshniwal, and Sharan Kumar Allur. “Shunt connection: An intelligent skipping of contiguous blocks for optimizing
MobileNet-V2". In: Neural Networks 118 (2019), pages 192-203

Bernhard Haas, Alexander Wendt, Axel Jantsch, and Matthias Wess. “Neural Network Compression Through Shunt Connections and Knowledge
Distillation for Semantic Segmentation Problems”. In: 17th International Conference on Artificial Intelligence Applications and Innovations (AIAl).

June 2021
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= Block ID MAdds KQ CIFAR10 KQ CIFAR100
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flops reduction ~ 42% ~ 31%




Shunt Architecture on Classification

Acc. CIFAR10 [%] Acc. CIFAR100 [%]

Original model 91.93 67.10
Shunt-inserted models 79.78 53.56
Fine-tuned models with shunt
Standard 88.09 64.63
Partial model freezing 85.66 (-2.43) 60.04 (-4.59)

Knowledge distillation (T=5, A=2)  91.36 (+3.27) 67.54 (+2.91)




Shunt Architecture on Segmentation

Block ID  MAdds  KQ

227 M -
53 M -
230 M -
166 M -
128 M 0.13
211 M 0.15
211 M -
114 M 0.20
146 M -
160 M  0.20
75 M 0.19
Head 247 M -

ST20B

® MobilNet V3 Small Segmentation
architecture

e Cityscapes data set

Soo~NooA~wWN RO




Shunt Architecture on Segmentation

Reference mloU: 59.6

7-10-ARCH4 5-10-ARCH1 4-10-ARrcH1

MAdds -15% -28% -39%
NCS2 111 ms (-12.6%) 98 ms (-22.8%) 92 ms (-27.6%)

Shunt-inserted models - mIoU:
34.84 37.97 35.13

FINE-TUNED MODELS WITH STANDARD SHUNT - mIoU:
Standard 56.52 5491 51.83
Knowledge distillation ~ 56.03 (-0.49)  55.98 (4+1.07) 51.14 (-0.69)



Shunt Architecture on Segmentation

Depth Multiplier: built in parameter of MobileNet for controlling the number of channels.



Shunt Connection - Summary

Summary
® Shunt connection is effective to decrease model size




Shunt Connection - Summary

Summary
® Shunt connection is effective to decrease model size

® Knowledge Quotient for identifying promising skip
connections




Shunt Connection - Summary

Summary

® Shunt connection is effective to decrease model size

® Knowledge Quotient for identifying promising skip
connections

e Knowledge distillation for training the replacing shunt
block
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RAGWEED DETECTION



Ragweed Invasion
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Scenarios

® S1: to detect small ragweed plants that are 10cm? in size.
= Ground Sampling Distance GSD = 0.1 cm/pixel

® S2: to detect large ragweed 1 m? in size.
= GSD = 1cm/pixel



Scenario S1 S2

Dron DJI DJI Wingtra DJI DJI Wingtra
one Phantom Matrice One Phantom Matrice One

Efficiency Metrics

Groundwidth [m/img] 5.47 8.19 5.46 54.72 81.92 54.56

Groundlength [m/img] 3.65 5.46 3.63 36.48 54.60 36.32

Ground area [km?/flight] 0.2 0.62 0.31 1.97 6.22 3.09

Flights per km? 5.08 1.61 3.24 0.51 0.16 0.32

Time [h/km?Z] 2.54 1.48 3.19 0.26 0.15 0.31

Costs [EUR/km?Z] 152.3 176.9 145.6 15.2 17.7 14.6

Optimal Flight Parameters

Altitude [m] 3.65 11.41 4.7 36.48 114.09 47.03

Speed [m/s] 20 23 16 20 23 16

Images per flight 9,869 13,902 15,595 987 1,391 1,560

Framerate [images/s] 5.48 4.21 4.41 0.55 0.42 0.44\>

51 )_




Segmentation for Ragweed ldentification

Network: Deeplab V34, based on MobileNet V3, with several layers modified

Pretrained on Cityscapes dataset

Trained with drone based recorded image set: 130 minutes of video data, height:
25-4m
971 images, 960x1080 pixel

Platform: Nvidia Jetson TX2

e QOptimizations: Shunt connections

Tensor RT Optimization



Segmentation accuracy

mloU
Resolution divd dIv3s dIv3trt dlv3trts

961 x 541 0.588 0.625 0.574  0.625
1921 x 1081 0.670 0.695 0.634  0.695

div3 DeeplLab V3 based reference model

div3s dlv3 with shunt connection

div3trt  dIv3 optimized with Tensor RT framework

div3trts  dIv3 optimized with Tensor RT framework and with shunt connection
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Latency vs. Accuracy



Ragweed Detection - Summary
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Ragweed Detection - Summary

Summary

® Drone based detection is cost efficient
5-50 x more cost efficient, 8-100x more time efficient
than manual methods

® Segmentation is superior over object detection

® DeeplLabV3+ is a suitable base network

® Nvidia TX2 is a reasonable platform
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DNN PARTITIONING FOR
INFERENCE



Partitioned DNNs



Partitioning Methodology

Methodology
® Energy and delay model

® Quantization and compression at partitioning point

® Selecting the partitioning point




Energy Model

J
Enode = » _(Ep(di-1, ti, PP)) + Ec(cj, Cc)
i=1

Enode Energy spent on the loT node

J Partitioning point

i DNN layers

ti Computation in layer i

di_; Amount of input data for layer /

G Amount of data at partitioning point j
Ep Processing energy

Ec Communication energy

Pp loT Node platform

Silvia Krug and Mattias O’Nils. “Modeling and comparison of delay and energy cost of iot data transfers”. In: IEEE Access 7 (2019),
pages 58654-58675

Irida Shallari, Isaac Sanchez Leal, Silvia Krug, Axel Jantsch, and Mattias O’Nils. “Design space exploration on loT node: Trade-offs in processing and
communication”. In: |EEE Access (2021) @



Quantization and Compression

Quantization

i =8 b1

- (%57)

v

After quantization, the data is compressed

with the zip algorithms.

Quantized data

Resolution in bits

data to be quantized

Maximum of the value range of f
Minimum of the value range of f
Mean of all f



Selection of Partitioning Point

e Candidate points have low data volume

® For each candidate point

® Quantization and compression
® Retraining

® Best point according to constraints and
optimization criteria is selected.




Wheel Chair Steering Case Study

Input image 32-bits 1-bit

Cristian Vilar Giménez, Silvia Krug, Faisal Z. Qureshi, and Mattias O'Nils. “Evaluation of 2D-/3D-Feet-Detection Methods for Semi-Autonomous
Powered Wheelchair Navigation”. In: Journal of Imaging 7.12 (2021)



TinyYolo V3

- Partitioning ;s

Layer6-32

conv2

165°

convl
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DNN Partitioning - Summary

Summary
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DNN Partitioning - Summary

Summary
e Effective DNN partitioning is feasible

® DNN partitioning opens a considerable design space for
DNN based loT applications

® Next steps is to explore more aggressive DNN adaptions
for partitioning

y




Results, publications, demos, code on

eml.ict.tuwien.ac.at



i Questions ?
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