
Control Systems in the presence of Computational Problems
Martina Maggio



Control: The Hidden Technology1

1This is the title of a famous lectio magistralis on control given by Karl-Johan Åstrom.









In a nutshell...

I Controllers are software programs that run on hardware

I As such, they can experience computational problems

I For the rest of this talk: faults causes deadline misses

I If we run these controller in practice we see that very often deadline misses are
not a problem – but: can we certify that the system “will not misbehave” despite
the presence of deadline misses?
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Control Design



Modelling the Physical Phenomena2

I J: moment of inertia of the center pillar

I ma, la: mass and length of first arm

I mp, lp: mass and length of pendulum arm

I g : gravitational acceleration constant

I φ: base angle

I θ: pendulum angle

I α := J + (13ma + mp) l2a
I β := 1

3mp l
2
p

I γ := 1
2mp la lp

I δ := 1
2mp lp g

dφ
dt = φ̇

dφ̇
dt = 1

αβ−γ2+(β2+γ2) sin2 θ
{βγ(sin2 θ − 1) sin θφ̇2 + . . . }

dθ
dt = θ̇

d θ̇
dt = 1

αβ−γ2+(β2+γ2) sin2 θ
{β(α + β sin2 θ) cos θ sin θφ̇2 + . . . }

2For the full derivation, see Magnus Gäfvert, Modelling the Furuta Pendulum, ISSN 0280–5316
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Modelling the Physical Phenomena

I Identifying system state, input, and output

I Non-linear resulting model

I Determining the system equilibria and linearizing the model

I Discretizing with time step T
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xk+1 = Ad xk + Bd uk
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Example: Furuta Pendulum model

xk+1 =Ad xk + Bd uk

yk =Cd xk + Dd uk

I x =
[
θ θ̇ φ̇

]T
, y = x , T = 5ms

I u is the torque applied at the base level

Around the upright equilibrium point:

Ad =

[
1.001 0.005 0

0 1 0
0 0 1

]
, Bd =

[−0.083
−33.2
38.6

]
, Cd =

[
1 0 0
0 1 0
0 0 1

]
, Dd =

[
0
0
0

]
.
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Controller Nominal Execution

y (t)

C

u (t)

T

y1

y2
y3 y4

u1
u2 u3 u4

e1 e2 e3

t



Synthesizing the Controller

I Based on objectives (like speed of convergence and ability to reject disturbances)
we can pick a control algorithm (which executes periodically inside ek)

- many alternatives: state/output feedback, PID, LQR, LQG, MPC, . . .

I and verify that the closed-loop behaves in the desired way.



Example: Furuta Pendulum control synthesis

xk+1 =Ad xk + Bd uk

uk+1 =K yk = K xk =
[
0.375 0.025 0.0125

]
xk

I Output feedback controller (but y = x , hence state feedback)

I At the beginning of every iteration we sense y , and calculate the next u

I Autonomous behavior: xk+1 = Ad xk + Bd K xk−1

x̃k =

[
xk
xk−1

]
, x̃k+1 =

[
xk+1

xk

]
=

[
Ad Bd K
I 0

]
︸ ︷︷ ︸

A

[
xk
xk−1

]
= A x̃k
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Verifying the Control Design

I Typical assumptions in terms of computation:

- instantaneous sensing and actuation
- instantaneous computation
- no communication overhead

I The design framework that we used is already employing a one-step delay
paradigm, to take advantage of predictable communication and execution times

I If the spectral radius ρ (A) is less than 1, the closed-loop system is stable,

ρ (A) = max |λ (A)|
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What if there are deadline misses?



Missing a Deadline

y (t)

C

u (t)

T

y1

y2
y3 y4

u1
u2 u3 = ? u4

?e1 e2

t

Two decisions:

I What to do with
the control signal?

I What to do with
the computation?
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Missing a Deadline

For the control signal3

I Hold: keeping the previous value

I Zero: set the control signal to zero

For the computation4

I Kill: kill the current task with a clean reset, nothing happened

I Skip-Next: let the current task continue but do not start a new one in the next
period and wait for the following activation

3Steffen Linsenmayer and Frank Allgöwer, CDC 2017
“Stabilization of networked control systems with weakly hard real-time dropout description”

4Anton Cervin, IFAC World Congress 2005
“Analysis of overrun strategies in periodic control tasks.”
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Kill&Zero

Hit

xk+1 = Ad xk + Bd uk
uk+1 = K xk

⇓[
xk+1

uk+1

]
=

[
Ad Bd

K 0

]
︸ ︷︷ ︸

AH

[
xk
uk

]

Miss

xk+1 = Ad xk + Bd uk
uk+1 = 0

⇓[
xk+1

uk+1

]
=

[
Ad Bd

0 0

]
︸ ︷︷ ︸

AM

[
xk
uk

]

The closed-loop system
switches arbitrarily
between AH and AM

We don’t have much hope
to guarantee stability...
...unless we add constraints!
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Constraint Example

“We cannot miss more than n consecutive deadlines”5

...means that the system switches arbitrarily between matrices in Σ:

Σ = {AH Ai
M | i ∈ Z, 0 ≤ i ≤ n}

corresponds to i misses
followed by 1 hit

5Martina Maggio, Arne Hamann, Eckart Mayer-John, Dirk Ziegenbein, ECRTS 2020
“Control System Stability under Consecutive Deadline Misses Constraints”
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Joint Spectral Radius

We can use a result6 on switching systems, that states that the system that arbitrarily
switches among matrices in Σ is asymptotically stable if and only if the joint spectral
radius7 ρ (Σ) is less than 1

ρµ(Σ) = sup {ρ (A)
1
µ : A ∈ Σµ}

ρ (Σ) = lim supµ→∞ ρµ(Σ)

6Gian-Carlo Rota and Gilbert Strang, Indagationes Mathematicae, 63:379-381, 1960
“A note on the joint spectral radius”

7Raphael Junger, Lecture Notes in Control and Information Sciences, 2009
“The Joint Spectral Radius: Theory and Applications”



Joint Spectral Radius

I The problem of determining if the joint spectral radius is less than 1 is
undecidable8 even for “simple” set of matrices Σ

I But lower and upper bounds {ρ` (Σ) , ρu (Σ)} can be found via many9 different
analytical methods

I So if ρu (Σ) < 1 the stability of the system with (constrained) deadline misses is
guaranteed

8Vincent Blondel and John Tsitsiklis, Systems & Control Letters, 41(2):135–140, 2000
“The boundedness of all products of a pair of matrices is undecidable”

9Guillaume Vankeerberghen, Julien Hendrickx, and Raphaël M. Jungers, HSCC 2014
“JSR: a toolbox to compute the joint spectral radius”



Fault Models

I Probabilistic

I Constrained, or weakly-hard10

1. τ `
(x
k

)
, AnyHit

2. τ `
〈x
k

〉
, RowHit

3. τ `
(x
k

)
, AnyMiss

4. τ `
〈x
k

〉
= 〈x〉, RowMiss

with x ∈ N≥, k ∈ N>, where x ≤ k

. . . 0 1 0 1 1 1︸ ︷︷ ︸
k

0 1 1 0 . . .

10Guillem Bernat, Alan Burns, Albert Liamośı, IEEE Transactions on Computers, 2001, “Weakly
hard real-time systems”
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Weakly-Hard Constraints as Automata

I Any weakly-hard constraint can be transformed
into a corresponding finite state machinea

I The transformation enables the analysis via
joint spectral radiusb

aNils Vreman, Richard Pates, and Martina Maggio, RTAS 2022
“WeaklyHard.jl: Scalable Analysis of Weakly-Hard Constraints”
https://github.com/NilsVreman/WeaklyHard.jl

bNils Vreman, Paolo Pazzaglia, Victor Magron, Jie Wang, Martina Maggio, CDC & Letters 2022
“Stability of Linear Systems Under Extended Weakly-Hard Constraints”

(x
k
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=
(1
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https://github.com/NilsVreman/WeaklyHard.jl


Performance Analysis11
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11Nils Vreman, Anton Cervin and Martina Maggio, ECRTS 2021
“Stability and Performance Analysis of Control Systems Subject to Bursts of Deadline Misses”



Conclusion

I Stability and performance analysis of control systems subject to deadline misses

I Sometimes when control software experiences faults (missing deadlines) there is
no need to worry!

maggio@cs.uni-saarland.de
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