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- DataFog: A data-driven platform for capacity and resource

management in vehicular fog computing (2019 — 2022)
This project is funded by Academy of Finland (grant number: 317432).

« 5G-Mobix: 5G for cooperative & connected automated mobility
on x-border corridors (2018 — 2022)

This project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement No. 825496. More
information can be found from www.5g-mobix.com.
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 Application scenarios

« Task allocation and capacity planning
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Vehicle Sensors
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Vehicles currently on the road have 60-100 sensors onboard. This number is projected to increase to 200+.

. Source: Automotive Sensors and Electronics 2017
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Extended Sensors

 Extending the perception obtained by the onboard sensors, with sensor
data received from surrounding vehicles or road side units (RSUs)
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Gorka Velez, Angel Martin, Giancarlo Pastor, and Edward Mutafungwa. 5G Beyond 3GPP Release 15 for Connected
Automated Mobility in Cross-border context. Sensors 2019, 20, 6622. doi: 10.3390/s20226622



Where to process the data?
 Move computation close to where the data is generated

Where to gather and process the data collected from multiple
sources?
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Application Scenarios

- Stationary edge/fog nodes  Mobile edge/fog nodes
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Drone docking station (Rumble Tools)
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Weather sensor (Vaisala)

Luminaires (Ensto) \
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(Nokia, Premix)
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In-bus data processing (Source: digi.com)

Energy harvesting & cooling
network under ground

Smart light pole at Nokia Campus, Espoo.
(Source: www.luxturrimb5g.com)
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Vehicular Fog Computing (VFC)

« Complement cellular fog nodes (stationary) with vehicular fog
nodes (mobile)

« Deploy vehicular fog nodes (VFNs) on commercial fleets like
buses, taxis and drones

* One-hop communications

Y. Xiao and C. Zhu, "Vehicular fog computing: Vision and challenges," in Proceedings of 2017
IEEE International Conference on Pervasive Computing and Communications Workshops
(PerCom Workshops), March 2017, pp. 6-9, doi: 10.1109/PERCOMW.2017.7917508.
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Temporal Variation in Vehicular Traffic
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C. Zhu, G. Pastor, Y. Xiao and A. Yla-jaaski, "Vehicular Fog Computing for Video
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Availability of Services

Over 90% of client vehicles could
receive services from nearby VFNs for
more than 85% of the traveling time
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*  Luxembourg SUMO Traffic scenario (LuUST)
L. Codeca, R. Frank, and T. Engel, “Luxembourg SUMO Traffic (LuST) Scenario: 24 Hours of Mobility for Vehicular
Networking Research,” Proc. IEEE VNC, 2015, pp. 1-8.

+  Simulate the scenarios of video crowdsourcing using VeinsLTE
* One-hop DSRC and LTE
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Vision-based Vehicular Applications

 Pedestrian, bike and vehicle detection
« Obstacle detection

« Traffic sign recognition

« Construction site detection

« Temporary lane closure detection
« Parking slot detection
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Crowdsourced Mapping

4« mobil

Anintel Company

R Common Industry Approach - HD Maps Mobileye’s Approach - AV Maps

oad
2 (® Not Scalable ) Scalable-by-design
E X pe I' | e n Ce Reliance on dedicated mapping fleets with Millions of Mobileye-equipped ADAS
expensive sensors (lidar, camera, INS) vehicles sending data to the cloud in small

Management™ data packets (10kb/km)

To facilitate autonomous driving anywhere in the world, we first need to map everywhere in the (® Manual/semi-automatic mapping process ) Fully automated map generation at the

world. But not just any maps will do. Instead of overemphasizing global accuracy, Mobileye’s i push of a button

crowdsourced, continuously updated map of the world digitizes precisely what AVs neqd nothing

more, nothing less. We re making maps for the autonomous future.

f 9 9 map ® Infrequently updated - changes are not (©) Maps can be updated in near-real time
: reflected in real time because of sophisticated change-

detection algorithms on millions of
mapping agents

(® Overly specified geometric accuracy in
global coordinates @ Superior local accuracy:
where it matters

(® Relying on raw data on road semantics

that have no specifics or insight on human @ Using the “wisdom of the crowd” to create
driving patterns rich semantic layer of driving culture and
traffic rules
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Automatic map update using dashcam video

Aziza Zhanabatyrova, Clayton Leite, and Yu Xiao, “Automatic Map Update using Dashcam Videos”, arXiv, Sep 2021
(revised in Jan 2022), https://arxiv.org/abs/2109.12131
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« A pipeline for initiating and updating 3D maps with dashcam videos,
with a focus on automatic change detection based on comparison of
metadata (e.g., the types and locations of traffic signs)
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Initial Map Creation

A.2.1 semantic segmentation

A.1 Structure-from-Motion (SfM) point clouds

GARMIN 12/02/201911:17:10 AM 60.1

A.3 3D point cloud segmentation-> metadata

‘The camera poses are shown
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Map Update
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Latency

Hardware: Intel(R) i7-11700F processor clocked at 2.50GHz and an
NVIDIA RTX 3070 8GB GPU.

Latency:

* Pixel-wise 3D localization (step B.1.1): 100ms per image

» Object detection (step B.1.2): 60ms per image

« Camera pose estimation based on SfM (B.1.3): 50ms per image

Overall: 5 fps if all the steps are run in sequence
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5G testbed in Otaniemi

https://www.youtube.com/watch?v=ZvismGBr7Xk



« Task allocation and capacity planning
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C. Zhu, Y. -H. Chiang, Y. Xiao and Y. Ji, "FlexSensing: A Qol and Latency Aware Task Allocation
Scheme for Vehicle-based Visual Crowdsourcing via Deep Q-Network," in I[EEE Internet of Things
Journal, doi: 10.1109/J10T.2020.3040615. 2020.

C. Zhu, Y. -H. Chiang, A. Mehrabi, Y. Xiao, A. Yla-Jaaski and Y. Ji, "Chameleon: Latency and Resolution
Aware Task Offloading for Visual-Based Assisted Driving," in IEEE Transactions on Vehicular Technology,
vol. 68, no. 9, pp. 9038-9048, Sept. 2019, doi: 10.1109/TVT.2019.2924911.

C. Zhu et al., "Folo: Latency and Quality Optimized Task Allocation in Vehicular Fog Computing," in IEEE
Internet of Things Journal, vol. 6, no. 3, pp. 4150-4161, June 2019, doi: 10.1109/JI0T.2018.2875520.
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Problem Formulation

* The objective is to minimize the service latency while keeping
the service quality as high as possible

« Constraints
« Service Latency Tolerance
» Capacity/Resource Limitation
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How to measure quality?

 Video resolution

* Quality of Information (Qol), application-specific
« Take object recognition as example, we calculate the Qol as the
number of pixels covering the targeted objects in each image.

GARMIN 12/08/2019 01:09:34 PM 60.18865 24.81495 0 KM/H GARMIN 12/08/2019 12:58:31 PM 60.18805 24.81453 0 KM/H
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Trade-offs

 Resolution vs. transmission
latency

« Transmission distance vs.
transmission latency

« Sampling rate vs. resource
consumption

« Server workload vs.
processing delay
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I I ex e n s I n g li; Geographic Information

@ Sensing Task & Processing Task
@ Task Allocation Strategy Update
@ Visual Data

@ Results Report

Determine the rate of data collection
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State of VFN: geo-info, #customer vehicles (One Agent in A Service Zone)



W. Mao, O. U. Akgul, A. Mehrabi, B. Cho, Y. Xiao and A. Yla-J&éaski, "Data-Driven Capacity
Planning for Vehicular Fog Computing," in IEEE Internet of Things Journal, doi:
10.1109/JI0T.2022.3143872.

Aalto-yliopisto
Aalto-universitetet

H  Aalto University



Capacity Planning

Input:
 Expected quality of service

« Estimated demand and supply
(vehicle traffic, application profiles)

« Cost estimation (installation costs,
operating costs)

Output:

*  Where to deploy fog nodes? How
much capacity for each node?
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A Helsinki city map that covers 869
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TABLE III: Comparison of fog node distribution on weekdays
using DS, CP-CO, and CP-AB, where # represents the cluster ID.

@

B
CEN VEN . /\ \ /\/ . N4 \/_\
Downtown #4 | #13 #14 | #18 #24 | #35 region dﬂ"@ @.0" @..0° @-.0° REIR P dv"°° 0\79" 6.5.0° & & &0 \5,@ & &
DS 16 20 21 14 21 22 146
CP-CO 17 20 22 15 21 25 0 (a) Schedule of VFN ID 1. (b) Schedule of VEN ID 2.
CP-AB 16 20 21 14 21 22 543 ¢ 8 \—/_\/_\ ]
Suburb | #2 | #8 | #20 | #28 | #34 | #42 | region AL /\ — / LN/ N /
DS 9 |20 | 10 | 14 | 13 | 9 45 FFES I ITITETY FELITFTITFTST S
gﬁ:ﬁg g gg }(1) }: }g g 633 (c) Schedule of VFN ID 3. (d) Schedule of VEN ID 4.
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DS: fog nodes on both cellular base stations and buses, & § 93 $ 70T 9

and installing VFNs on a minimum number of buses that (e) Schedule of VFN ID 5. (f) Schedule of VEN ID 6.

can cover the selected bus journeys. _ Fig. 9: Schedules of the 6 VENs from bus line No. 322 in Helsinki,
CP-CO: fog nodes only on cellular base stations where A and B are the departure stops in two directions. The green
CP-AB: fog nodes on cellular base stations and all the lines represent the schedules of the 22 selected journeys, and the
buses in the study area blue lines represent the turn-around time between the journeys.

When the unit installation cost becomes lower, or when the operational time becomes
longer, DS will have higher potential for cost-saving compared to CP-CO.
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VFogSim

O. Akgul, W. Mao, Byungjin, C., and Y. Xiao, “VFogSim: a data-driven platform for
simulating vehicular fog computing environment®, TechRXiv, April 2022,
https://doi.org/10.36227/techrxiv.17829398.v2

Source code can be downloaded from https://mobilecloud.aalto.fi/?page id=1441
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« Can be used for evaluating task allocation and capacity planning solutions
« Support the mobility of fog nodes

*  Output: QoS, techno-economic performance

« Configurable inter-service prioritization and pricing strategies
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Summary

 Edge/Fog Computing is a key enabling technique for cooperative &
autonomous driving

« Challenges mainly come from the mobility of vehicles including the
ones carrying fog computing nodes

« Task allocation/resource management algorithms must be
lightweight

« Capacity planning needs to take into account uncertainty in both
vehicle traffic and application profiles

Aalto University
School of Electrical
Engineering 5.5.2022
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Questions?

Aalto University
School of Electrical
Engineering



