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ABSTRACT
Several attacks on AES using far field electromagnetic (EM) emis-
sion as a side channel have been recently presented. Unlike power
analysis or near filed EM analysis, far field EM attacks do not require
a close physical proximity to the device under attack. However, in
all previous attacks traces for the profiling stage are also captured
at a distance (fixed or variable) from the profiling devices. This
degenerates the quality of profiling traces due to noise and interfer-
ence. In this paper, we train deep learning models on "clean" traces,
captured through a coaxial cable. Our experiments show that the
resulting models can extract the AES key from less than 500 traces
on average captured at 15 m from the victim device without repeat-
ing each encryption more than once. This is a 20-fold improvement
over the previous attacks which require about 10K traces for the
same conditions.

CCS CONCEPTS
• Security and privacy → Cryptography; Cryptanalysis and
other attacks;

KEYWORDS
Side-channel analysis, far field EM emissions, profiled attack, deep
learning, AES

1 INTRODUCTION
Side-channel attacks extract secrets from physical devices by ex-
ploiting vulnerabilities in the implementation via non-primary, side
channels [1, 2]. By finding the correlation between the physical
measurements (power consumption, electromagnetic (EM) emis-
sions, timing) taken at various points during the computation and
the internal state of the processing device, the attacker can deduce
the internal state of the device and then extract the related sensi-
tive information, e.g. the secret key [3–5]. Different types of side
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Table 1: Summary of previous far field EM side-channel at-
tacks on nRF52832 implementation of AES-128.

Previous
attacks

# Traces to
extract the key

Distance
to the device

# Encryption
repetitions

[14] 52K 1m 500
[15] 5K 15m 1K
[16] 10K 15m 1

This work 341 15m 1

channels have been successfully exploited to break physical imple-
mentations of cryptographic primitives [6, 7], algorithms [8–10]
and protocols [11], steal intellectual property from FPGAs [12], and
reverse-engineer neural networks [13].
Previous work. Attacks based on power or near filed EM side
channels [17–19] require that the attacker has a direct physical ac-
cess to the device under attack to perform measurements. Recently
several side-channel attacks on Advanced Encryption Standard
(AES) based on far field EM emissions have been presented [14–
16]. Far field EM emissions can be measured on a distance from
the device under attack and are a new type of side-channel which
has been explored much less compared to timing, power and near
field EM. Camurati et al. [14] presented the first template attack on
AES-128 based on far field EMs. They observed that side channels
from an AES implementation on a mixed-signal chip may uninten-
tionally couple with the signal transmitted by the on-chip antenna.
By analyzing the transmitted signal, it may be possible to recover
the AES key. In [14], the AES-128 key is recovered from 52K traces
captured at 1m distance to the target device in an office environ-
ment. Each trace is obtained by averaging out 500 measurements
of the same encryption. In the follow up template attack [15], the
AES-128 key is recovered from 5K traces captured at 15 m to the
target device in an office environment using 1K repetitions of the
same encryption and key enumeration up to 223. Finally, in [16] a
deep learning-based attack is presented and further improved the
attack efficiency. They train neural networks on traces captured at
different distances from the profiling devices, and show that the
model can recover the key from about 400 traces captured at 15
m distance to the target device with repeating each encryption 1K
times. However, in a real attack scenario, it is impossible to capture
traces with repeating each encryption more than once. For this case,
[16] requires 10K traces captured at 15 m distance to the target de-
vice to recover a subkey, which is not efficient enough. In this paper,
we train neural networks on traces captured through a coaxial cable.
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Figure 1: AES-128 algorithm.

Table. 1 shows a summary of previous profiled attacks based on far
field EM emissions against nRF52832 implementations of AES-128.
Our contributions. Our main contribution is an observation that
neural networks trained on traces captured through a coaxial cable
from profiling devices with some noise added perform considerably
better than networks trained on traces captured at a distance from
profiling devices, as in [14–16]. Our best neural network model
can extract the key from 341 traces on average captured at 15 m
distance from the device under attack without repeating each en-
cryption more than once. This is a 29-fold improvement over the
attack presented in [16] which requires 9954 traces for the same
conditions.
Paper organization. The rest of the paper is organized as follows.
Section 2 provides background information on AES algorithm, deep
learning side-channel attacks, and EM emissions. Section 3 defines
the adversary model. Section 4 presents the equipment and the
methods used to acquire and pre-process traces. Sections 5 and 6
describe the profiling and the attack stages, respectively. Section 7
summarizes the experimental results. Section 8 concludes this paper
and discusses open problems.

2 BACKGROUND
This section provides background information on AES-128, side-
channel attacks, and the usage of EM emissions as a side channel.

2.1 AES-128 algorithm
The AES [20] is a symmetric encryption algorithm standardized
by NIST in FIPS 197 and included in ISO/IEC 18033-3. It takes a
128-bit block of plaintext P and an 𝑛-bit key 𝐾 , 𝑛 = {128, 192, 256},

as input and computes a 128-bit block of ciphertext C as output.
In this paper, we use the AES with the key size 𝑛 = 128, called
AES-128.

The flow of the AES-128 algorithm is illustrated in Fig. 1. AES-128
performs 10 rounds of encryption. Each round except the last one
repeats the following four steps: non-linear substitution, SubBytes,
transposition of rows, ShiftRows, mixing of columns, MixColumns,
and round key addition, AddRoundKey, but uses a different round
key, 𝑅𝐾𝑖 , 𝑖 ∈ {1, . . . , 10}, derived from the original key 𝐾 . The last
round does not mix columns.

As any block cipher, AES can be used in several modes of opera-
tion. In this paper we use Electronic Codebook (ECB) mode, in which
the message is divided into blocks and each block is encrypted
separately.

2.2 Side-channel attacks
The aim of a side-channel attack is to retrieve some secret, e.g. the
encryption key 𝐾 ∈ K of a cipher, whereK is the set of all possible
keys. To recover 𝐾 , the attacker uses a set of known input data X
(e.g. the plaintext, ciphertext) and a set of physical measurements
T (e.g. power consumption, EM emissions, timing). The measure-
ments T are analyzed to find the correlation with the key. The
analysis is usually done by partitioning 𝐾 into 𝑏-bit subkeys, 𝐾𝑘 ,
and recovering each subkey independently for 𝑘 ∈ {1, 2, . . . , |𝐾 |

𝑏
}.

During the analysis, the attacker computes |𝐾 |
𝑏

vectors of proba-
bilities 𝑝𝑘 whose elements, 𝑝𝑘,𝑗 , represent the probability that the
subkey 𝐾𝑘 = 𝑗 is the correct subkey, for 𝑗 ∈ {0, 1, . . . , 2𝑏 − 1}. To
guide the selection of the right candidate, the estimation metrics
defined in the next subsection can be used.
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2.2.1 Estimation metrics.

Rank. The rank of a key 𝐾 ∈ K , 𝑅(𝐾), is the number of keys
with a higher probability than the one of 𝐾

𝑅(𝐾) = |{𝐾 ′ ∈ K : 𝑃𝑟 [𝐾 |X,T] < 𝑃𝑟 [𝐾 ′ |X,T]}|.

Guessing entropy. The Guessing Entropy, GE, is the expected rank
among all possible keys

𝐺𝐸 = E
𝐾 ∈K

(𝑅(𝐾)) .

GE provides a useful estimation of the number of key candidates
required to be evaluated for a successful attack. If 𝑏-bit subkeys
of 𝐾 are recovered independently, for 𝑘 ∈ {1, 2, . . . , |𝐾 |

𝑏
}, then

the entropy is guessed for each subkey 𝐾𝑘 separately and Partial
Guessing Entropy, PGE, rather that GE is used as an estimation
metric [21].

2.2.2 Profiled side-channel attacks. The main idea of a profiled
attack is to create a leakage “profile” of a target device in advance, in
order to decrease the amount of side-channel information necessary
to break the device under attack during the actual attack. This may
be important because, for example, physical access to the device
under attack is only possible within a short time, or because the
device frequently changes its key.

A profiled side-channel attack is performed in two stages: profil-
ing and attack. Profiling can be done by creating a template [14, 22,
23], or a model, e.g. an artificial neural network [24–29].

To create a profile using the deep learning-based method, a
neural network is trained to learn leakage of the target device for
all possible values of the sensitive variable. The training is done
using a large number of traces captured from the profiling device(s)
which are labelled according to the selected leakage model (e.g.
Hamming weight, Hamming distance, identity). Then, at the attack
stage, the trained network is used to classify the traces captured
from the device under attack.

2.3 EM emissions as a side channel
EM emissions can be classified into direct and indirect ones. These
two types of emissions are caused by different phenomena and have
different transmission properties.

During the execution of a cryptographic algorithm in the Crypto
block, the logic components in the Crypto block change their states
synchronously, according to the system clock. A sharp current
change in the logic components leads to direct EM emissions. These
emissions have high frequency components which can typically be
detected by a near-field probe. Decapsulation may be required to
acquire good direct EM emissions in some cases [8, 30].

Indirect EM emissions arise from the coupling effect between
various components on chip. For example, a square wave noise
is created by the frequently switching clock signal from the CPU
core. Side channels from the Crypto block get modulated by this
square wave. Due to the substrate coupling [31], the resulting signal
couples with the digital signal representing the ciphertext and
transfers through the Bus to the analog part where it is converted to
an analog signal by the Digital-to-Analog Converter (DAC). The RF
block and Voltage-Controlled Oscillator (VCO) modulate the analog
signal to a high frequency defined by the wireless transmission

protocol and transmit it through the antenna. For this reason, it is
possible to detect indirect EM emissions at a much longer distance
than direct EM emissions.

Following [14], we focus on the capacitive coupling which leads
to Amplitude Modulation (AM) of side channels from the Crypto
block.

3 ADVERSARY MODEL
The adversary can be anyone who has equipment for EM far field
acquisition and expertise in side-channel analysis and deep learning.
We also assume that:

(1) The adversary has at least one profiling device which is sim-
ilar to the device under attack and runs the same implemen-
tation of the AES-128 algorithm.

(2) The adversary has a full control over the profiling device(s),
e.g. knows the secret key, can apply chosen inputs, and mea-
sure side-channel signals.

(3) The adversary has an access to the device under attackwithin
15 m distance range to measure far field EM emissions during
the execution of the AES-128 algorithm and eavesdrop on
the ciphertext.

4 TRACE ACQUISITION AND
PRE-PROCESSING

This section describes how traces containing indirect EM emissions
were captured and pre-processed.

4.1 Measurement Setup
We use the same equipment as in [14–16]. The device under attack
is a Bluetooth 5-supported nRF52832 with a data transmission rate
of 2Mbps. The nRF52832 contains an ARM Cortex M4 CPU running
at 64 MHz. It is mounted on the Nordic nRF52 DK board, a develop-
ment kit suitable for implementing custom programs for the nRF52
series. In nRF52832, the C implementation of TinyAES from [32]
with a 128-bit key is used. The nRF52832 periodically runs AES
encryption with fixed 128-bits key and random plaintexts.

An Ettus Research USRP N210 software defined radio is used
as a receiver. Its center frequency is set to 2𝑓𝑐𝑙𝑜𝑐𝑘 + 𝑓Bluetooth =

2.528GHz, where 𝑓Bluetooth = 2.4GHz is the Bluetooth channel
center frequency and 𝑓𝑐𝑙𝑜𝑐𝑘 = 64MHz is the frequency of the CPU
clock. To determine the center frequency of the receiver, we used
the same way as in [14–16]. The sampling frequncy is set to 5 MHz.
The signal is received using a grid parabolic antenna TL-ANT2424B
with 24dBi gain.

4.2 Trace Acquisition
In our experiments, as in [14, 16], the transmitter sends the data
continuously. The data sent by the RF block consists of two major
parts: (1) the ciphertext with the central frequency at 2.4Ghz, and (2)
the modulated side channel leakage with the central frequency at
2.528Ghz. The ciphertext is generated by AES and the side channel
leakage (EM emission) is produced by switching activity of the
logic components in the Crypto block. The AES encryptions are
found in periodic blocks in the received data stream, as shown at
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Figure 2: Locating the last round of AES in the received data stream.

the top of Fig. 2. If we zoom in one block, we can clearly see the
ten encryption rounds of AES-128 (see the middle picture of Fig. 2).

In order to find an approximate start of each encryption, we use
a trigger signal, which is generated from the received signal. The
received signal contains AM modulated I/Q samples. To extract
the trigger, we post-process the I/Q samples by taking the absolute
value, then use a 5-order Butterworth band pass filter with 1.85MHz
and 1.95MHz lower and upper band frequencies, respectively, and
the 5-order Butterworth low pass filter with 5KHz cutoff frequency.

The orange line at the bottom of the top picture in Fig. 2 shows
a trigger signal filtered from the AM demodulated I/Q samples.
The blue horizontal line at the bottom of the top picture in Fig. 2
shows the average value of the trigger signal. Each encryption
starts approximately at the intersection of the blue line with the
rising edge of the orange line.

After determining the approximate start of each encryption, we
add an offset to the intersection point in order to locate the last
round. In the presented attack, the value of the S-box output in the
last round is used as a label for traces, see Fig. 1.

At the bottom picture of Fig. 2, the dashed red and green lines
show the beginning and the end of a 400 data point interval, respec-
tively, containing MixColumns and AddRoundKey operations of the
9th round and the complete last round of AES-128. One can see the
two identical patterns within approx. 130-200 points and 320-390
points corresponding to the two executions of AddRoundKey in the
9th and 10th rounds, respectively.

4.3 Trace pre-processing
After trace acquisition, we pre-process them by aligning, scaling
and averaging.

The alignment helps us to synchronize the traces precisely. The
scaling is necessary because, for training, we use traces captured
through a coaxial cable and, for testing, we use traces captured at a
distance from the device. Note that the coaxial cable connects the
transmitter and the receiver directly to receive the EM emission.
This emission is an RF signal sent from the RF block on the chip.
A coaxial cable can transmit signals that oscillate at high RF fre-
quencies without radiating them outside. Since the amplitude of
the received signal is proportional to the inverse of the distance to
the device, the amplitudes of trace captured through a cable and at
the distance are not within the same range.

Following [16], we use min-max scaling [33] to map the ampli-
tude of all traces to the interval [0,1].

In addition, traces for training are captured by repeating the
same encryption 100 times and averaging out the resulting traces.
So, each training trace is the average of 100 measurements of the
same encryption. Traces for testing are captured without repeating
the same encryption more than once (except for one experiment).

4.4 Correlation analysis
To show the reader how non-profiling attacks such as Correlation
Power Analysis (CPA) perform on far field EM side-channels and
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(a) Correlation coefficients for all subkeys.

(b) PGE vs number of traces for all subkeys.

Figure 3: CPA results for 10K traces captured through a coax-
ial cable with 100 repetitions.

how the number of repetitions affect the quality of traces, in this
section we present CPA results for traces captured with 100 repeti-
tions and without repetitions from an nRF52832 device using the
equipment and method presented in the previous section.

The Hamming weight of the S-box output in the last round of
AES is used as a leakage model for the CPA. Fig. 3(a) shows the
correlation results for all 16 subkeys for 10K traces captured with
100 repetitions. The red and green lines represent the correlation
coefficients of the correct subkey and the rest of subkey guesses,
respectively. Note 16 peaks in the interval between approx. 200 and
310 points corresponding to S-box evaluations.

As we can see from the PGE plots in Fig. 3(b), the CPA cannot
recover any subkey within 10K traces without the key enumeration.
The minimum rank is 2 and the maximum is 72.

Obviously, the CPA on traces captured on a distance from the
device under attack, and/or captured with less repetitions, is even
more difficult. As an example, see Fig. 4 which shows CPA results
for 5K traces captured at 15 m distance from the device without
repetitions.

5 PROFILING STAGE
This section describes howwe train neural networks at the profiling
stage.

Let T = {T1, . . . ,T|T|}, where T𝑖 ∈ R𝑚 , for 𝑖 ∈ {1, . . . , |T|}, be
a set of traces representing the computation of the last round of
AES which are captured from the profiling device(s) for randomly
generated plaintexts P𝑖 ∈ {0, 1}128 and a fixed key 𝐾 ∈ {0, 1}128.
Let C𝑖 ∈ {0, 1}128 be the ciphertext which is generated when the
trace T𝑖 is captured. Let C𝑖,𝑘 denote the 𝑘th byte of the ciphertext
C𝑖 , 𝑘 ∈ {0, 1, . . . , 15}. Let I = {𝑥 ∈ R | 0 ≤ 𝑥 ≤ 1}.

5.1 Labeling strategy
In theory, it is possible to train a single network capable of recover-
ing all subkeys, as demonstrated in [34]. However, network trained

(a) Correlation coefficients for all subkeys.

(b) PGE vs number of traces for all subkeys.

Figure 4: CPA results for 5K traces captured at 15m distance
without repetitions.

for a fixed subkey typically achieves a higher classification accu-
racy [35]. Taking this into account, we train a separate network for
each subkey 𝐾𝑘 , 𝑘 ∈ {0, 1, . . . , 15}.

To train a network for a subkey 𝐾𝑘 , each trace T𝑖 ∈ T, 𝑖 ∈
{1, . . . , |T|}, is assigned a label, 𝑙𝑘 (T𝑖 ), computed as

𝑙𝑘 (T𝑖 ) = C𝑖,𝑘 ⊕ 𝑅𝐾10𝑘 ,

where 𝑅𝐾10𝑘 is the 𝑘th byte of the last round key 𝑅𝐾10. It is easy
to see that the value of 𝑙𝑘 (T𝑖 ) is equal to the value of the S-box
output in the last round when the 𝑘th byte of C𝑖 is computed.

The resulting labeled set of traces is used to train a neural net-
work N𝑘 : R𝑚 → I256 which maps a trace T𝑖 ∈ R𝑚 into a score
vector 𝑆𝑖,𝑘 = N𝑘 (T𝑖 ) ∈ I256 whose elements 𝑠𝑖,𝑘, 𝑗 represent the
probability that the S-box output in the last round is equal to
𝑗 ∈ {0, 1, . . . , 255} when the 𝑘th byte of C𝑖 is computed:

𝑠𝑖,𝑘,𝑗 = Pr(C𝑖,𝑘 ⊕ 𝑅𝐾10𝑘 = 𝑗) .

5.2 Training details
We use the same strategy as in [16] for training of neural networks.
The deep-learning model used in our experiments is Convolutional
Neural Network (CNN), which has been successfully applied to
bypass trace misalignment and to overcome jitter-based counter-
measures [25]. Layer structures of CNN classifiers are shown in
Table 2 and Table 8. Categorical cross-entropy loss is used to quan-
tify the classification error of the network. To minimize the loss,
the gradient of the loss with respect to the score is computed and
back-propagated through the network to tune its internal param-
eters according to the RMSprop optimizer (which is one of the
advanced extensions of the Stochastic Gradient Decent (SGD) al-
gorithm [36]) with the learning rate 0.0001 and no learning rate
decay. The training is carried out for a maximum of 100 epochs
with batch size 128. At each iteration, the model is stored instead of
being overwritten. This strategy gives us 𝑡 models N𝑒

𝑘
for different

epochs 𝑒 = {1, 2, . . . , 100} at the end of training, for each 𝑘 .
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Table 2: The architecture of the 𝐶𝑁𝑁 from [16].

Layer (Type) Output Shape Parameter #
Input (Dense) (None, 110, 1) 0
Conv 1 (Conv1D) (None, 110, 4) 16
AveragePooling 1 (None, 109, 4) 0
Conv 2 (Conv1D) (None, 109, 8) 104
AveragePooling 2 (None, 108, 8) 0
Conv 3 (Conv1D) (None, 108, 16) 400
AveragePooling 3 (None, 107, 16) 0
Conv 4 (Conv1D) (None, 107, 32) 1568
AveragePooling 4 (None, 106, 32) 0
Flatten 1 (Flatten) (None, 3392) 0
Dense1 (Dense) (None, 200) 678600
Dense2 (Dense) (None, 200) 40200
Output (Dense) (None, 256) 51456
Total Parameters: 772,344

6 ATTACK STAGE
This section describes how we test neural networks.

Let T̂= {T̂1, . . . , T̂| T̂|}, where T𝑖 ∈ R
𝑚 , for 𝑖 ∈ {1, . . . , |T̂|}, be an

ordered set of traces representing the computation of the last round
of AES which are captured from the device(s) under attack. The
same𝑚-point segment of the trace as the one used for the profiling
stage is selected.

At the attack stage, the trained networksN𝑒
𝑘
are used to recover

the subkeys 𝐾𝑘 from T̂ for every 𝑘 ∈ {0, 1, . . . , 15} as follows. The
traces T𝑖 ∈ T̂ are applied to N𝑒

𝑘
in order and the most likely label

𝑙𝑘 for T𝑖 is determined among all candidate labels as

𝑙𝑘 = argmax
𝑗 ∈{0,1,...,255}

(
𝑖∏
𝑝=1

𝑠𝑝,𝑘,𝑗 ), (1)

where 𝑠𝑝,𝑘,𝑗 is the 𝑗th element of the score vector 𝑆𝑝,𝑘 = N𝑘 (T𝑝 )
of a trace T𝑝 ∈ T̂ which precedes T𝑖 in T̂. Once 𝑙𝑘 = 𝑙𝑘 (T𝑖 ), the
classification is successful.

To verify if 𝑙𝑘 = 𝑙𝑘 (T𝑖 ) we permute T̂ 𝑟 times to get the test sets
T̂1, . . . , T̂𝑟 and apply them to N𝑒

𝑘
. The point where the rank of 𝐾𝑘

for N𝑒
𝑘
tested on T̂𝑗 , 𝑅𝑒𝑗 (𝐾𝑘 ), reaches 0 in the majority of test sets

T̂1, . . . , T̂𝑟 is the termination point. This is a different termination
condition from the one used in [16]. In [16] the condition 𝑅(𝐾𝑘 ) ≤
0.5 is used, where 𝑅(𝐾𝑘 ) is the average rank of 𝐾𝑘 for N𝑒

𝑘
tested

on T̂1, . . . , T̂𝑟 :

𝑅(𝐾𝑘 ) =
∑𝑟
𝑗=1 𝑅

𝑒
𝑗
(𝐾𝑘 )

𝑟
.

Note that, 𝑅(𝐾𝑘 ) ≤ 0.5 implies that 𝑅𝑒
𝑗
(𝐾𝑘 ) = 0 in the majority

of test sets. However, the opposite is not true, i.e. the rank may
reach 0 in the majority test sets before 𝑅(𝐾𝑘 ) reaches 0.5. This may
happen, for example, if 𝑅𝑒

𝑗
(𝐾𝑘 ) = 0 for 𝑗 = {1, 2, . . . , 𝑟 − 1} and

𝑅𝑒𝑟 (𝐾𝑘 ) = 𝑟/2 + 1, for an even 𝑟 . Therefore checking if 𝑅𝑒
𝑗
(𝐾𝑘 ) = 0

in the majority of test sets always results in either an earlier, or the
same termination point as the condition 𝑅(𝐾𝑘 ) ≤ 0.5.

Once the condition 𝑙 = 𝑙 (T𝑖 ) is satisfied and the correct label
𝑙 (T𝑖 ) is found for some 𝑖 ∈ {1, . . . , |T̂|}, the 𝑘th subkey of the 10th

Figure 5: Ten nRF52832 devices used in the experiments.

Table 3: Summary of the profiling trace set T in the first
experiment. Each trace in T is the average of 100 measure-
ments of the same encryption.

Distance
to device

Profiling device

𝐷1 𝐷2 𝐷3 𝐷4 𝐷5

cable 20K 20K 20K 20K 20K

round key 𝑅𝐾10𝑘 is recovered as

𝑅𝐾10𝑘 = 𝑙𝑘 (T𝑖 ) ⊕ C𝑖,𝑘 .

After recovering all subkeys of𝑅𝐾10, the original key𝐾 is computed
from 𝑅𝐾10 be reversing the AES-128 key expansion algorithm [20].

7 EXPERIMENTAL RESULTS
This section presents the results of our experiments1. Ten identical
nRF52832 devices shown in Fig. 5 are used. The devices 𝐷1 −𝐷5 are
used for profiling and the devices𝐷6−𝐷10 for attack. All attacks are
carried out in a corridor in an office building at 15 m distance from
the device under attack. In all attacks, the subkey 𝐾6 is recovered.
The choice of the subkey does not seem to affect the average results.
We have chosen 𝐾6 because in the CPA presented in section 4.4 𝐾6
has the largest PGE, 72 (see Fig. 3).

7.1 Training on traces captured through a cable
The aim of this experiment is to investigate if a neural network
trained on traces captured through a coaxial cable can classify with
a high accuracy traces captured at a distance from the device.

At the profiling stage, we train CNNs N𝑒
6 with the same archi-

tecture as in [16] (see Table 2) for 100 epochs, 𝑒 = {1, . . . , 100}. We
use 100K training set T composed as a union of 20K sets from five
different devices captured through a coaxial cable (see Table 3). We

1All our code and traces will be publicly available at https://github.com/NymeriaWang/
Advanced-Far-Field-EM-Side-Channel-Attack-on-AES.

Session 2: Side-Channels in CPS  CPSS ’21, June 7, 2021, Virtual Event, Hong Kong

34

https://github.com/NymeriaWang/Advanced-Far-Field-EM-Side-Channel-Attack-on-AES
https://github.com/NymeriaWang/Advanced-Far-Field-EM-Side-Channel-Attack-on-AES


Table 4: Average number of traces required to recover subkey 𝐾6 by CNN N𝑒
6 trained on the first and last rounds from traces

captured without repetitions at 15 m distance from the device under attack (for 100 tests).

Device
under attack

Last round First round

Average number
of traces

Best epochs
𝑒

Average number
of traces

Best epochs
𝑒

𝐷6 503 33 1208 100
𝐷7 943 40 > 2000 for all 𝑒
𝐷8 260 89 1467 34
𝐷9 504 40 > 2000 for all 𝑒
𝐷10 187 30 1206 56

average 479.4 > 1576

Table 5: Average number of traces required to recover sub-
key 𝐾6 by CNN N41

6 from traces captured at 15 m distance
from the device under attack (for 100 tests). Each trace is
the average of 𝑁 measurements of the same encryption.

Device
under attack 𝑁 = 1 𝑁 = 10 𝑁 = 100

𝐷6 615 58 12
𝐷7 743 62 11
𝐷8 387 53 14
𝐷9 594 90 21
𝐷10 214 34 8

average 510.6 59.4 13.2

verify that the receiver is not overloaded by visualizing the I/Q sam-
ples without cut-off for both real and imaginary parts. Each trace in
T is the average of 100 measurements of the same encryption. The
110-point segment comprising each trace is shown at the bottom
of Fig. 10.

At the attack stage, we test the trained networks N𝑒
𝑘
for 𝑒 =

{20, . . . , 100} on the trace sets T̂ of size 2K captured from 𝐷6 −𝐷10
at the distance 15 m to the device without repeating the same
encryption more than once. We use 𝑒 = 20 as a starting point
because the models N𝑒

𝑘
for 𝑒 < 20 are obviously underfitted. Each

trace of T̂ represents the same 110-point segment (shown in Fig. 10)
as in the traces of the training set T. The average numbers of traces
required to recover the subkey 𝐾6 from devices 𝐷6 − 𝐷10 are listed
in the column 2 of Table 5. To compute the average number of
traces, for each fixed 𝑒 = {20, . . . , 100}, we permute the trace set T̂
100 times and calculate the point where the rank 𝑅𝑒

𝑗
(𝐾6) reaches 0

in the majority of test sets T̂𝑗 , 𝑗 ∈ {1, . . . , 100}. The numbers listed
in the column 2 of Table 5 are for the best number of epochs, 𝑒 = 41.

From Table 5 we can see that N41
6 can recover the subkey 𝐾6

from 510.6 traces on average. This is a 19.5-fold improvement over
the attack presented in [16] which requires 9954 traces on average
for the same conditions. In [16] networks are trained on traces
captured from five different devices at five different distances to
the device, including the coaxial cable. This shows that training on
traces captured only through a coaxial cable is more advantageous.

Table 6: Average number of traces required to recover sub-
key𝐾6 byCNNN41

6 from traces capturedwithout repetitions
at 15 m distance from the device under attack for different
termination criteria (for 100 tests).

Device
under attack

Majority of 𝑅41
𝑗
(𝐾6) = 0

for 𝑗 ∈ {1, . . . , 100}
𝑅(𝐾6) ≤ 0.5

𝐷6 615 775
𝐷7 743 896
𝐷8 387 524
𝐷9 594 720
𝐷10 214 349

average 510.6 652.8

We also check how the results change if traces from the device
under attack are captured with multiple repetitions of the same
encryption. We do not think that such an attack setting is realistic.
However, it is interesting to compare our results to the results
of [14–16] which use multiple repetitions (from 100 to 1K).

We use the CNN N41
6 to recover the subkey 𝐾6 from the trace

sets of size 1K captured from 𝐷6 − 𝐷10 at the distance 15 m to the
device in which the same encryption is repeated 𝑁 = 10 and 100
times. Column 3 and 4 of Table 5 summarize the results. We can
see that the case of 𝑁 = 10 repetitions reduces the average number
of traces 8.6 times compared to the case without repetitions. For
𝑁 = 100 repetitions, the reduction is 38.7 times.

In the attack presented in [16], the best result for traces captured
with 100 repetitions under the same conditions is 2946 on average,
which is 223 times larger than the average result 13.2 in Table 5.
For traces captured with 1K repetitions under the same conditions,
the attack in [16] requires 367 traces on average. The template
attack presented in [15], requires 5K traces with 1K repetitions and
key enumeration up to 223 to recover the key at 15 m distance.
The template attack presented in [14] requires 52K traces with
500 repetitions to recover the key at 1 m distance. This shows
that training on traces captured through a coaxial cable is also
considerably more advantageous for the case when traces from the
device under attack are captured with multiple repetitions.
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Figure 6: The first and the last round traces captured at 15 m to device (without scaling, averaged over 10K traces).

Figure 7: The first and the last round traces captured by cable (scaled to [-1,1], averaged over 10K traces).

7.2 Evaluating other changes in training
strategy

From the previous experiment we can conclude that one of the
changes which contributes to the improvement of the results of [16]
is training on traces captured through a coaxial cable. The aim of
this experiment is to quantitatively evaluate how other changes:

(1) changing the attack point to the last round, and
(2) changing the termination condition

contribute to the improvement.

7.2.1 First round vs. last round. First, we create a new 100K training
set in which each trace represents the 110-point segment containing
16 S-box evaluations in the first round (same as in [16]). The trace
set is constructed as in Table 3 and labeled by the value of the S-box
output in the first round.We use this training set to train CNNs with
the same architecture as in Table 2. The CNNs are trained in the
same way as in the experiment 1, for 100 epochs 𝑒 ∈ {1, . . . , 100}.

We test the trained networks on the trace sets of size 2K captured
without repetitions from 𝐷6 −𝐷10 at 15 m distance from the device.
Table 4 lists the results and the best number of epochs 𝑒 for each
case. From Table 4 we can see that changing the attack point to the
last round contributes at least a three-fold improvement.

Next we compare the first and the last round traces in order to
analyse why the number of traces required for the attack in the
two cases differs. Fig. 6 shows the plots obtained by averaging 10K

400-point traces captured at 15 m to device for random plaintexts.
The blue plot represents computations in the 1st round and the
orange one - in the last round. No scaling is applied to traces. It
is evident that the side-channel signal in the last round’s traces is
considerably stronger. Since traces for the first and the last rounds
were captured in different days (several months apart), possibly
the positioning of equipment and environmental conditions were
different in the two cases.

Fig. 7 shows the plots obtained by averaging 10K traces captured
by cable for random plaintexts. The blue plot represents 16 Sbox
computations in the 1st round and the orange one - in the last
round. All traces are scaled to the interval [-1,1]. We can see that
there are some differences in the shape of traces, but they are not
significant.

Fig. 8 and Fig. 9 illustrate how well traces captured at 15 m
to device fit traces captured by cable (after [-1,1] scaling) for the
first and the last round cases, respectively. In both figures, the
blue/orange plot represents an average of 10K traces captured by
cable/at 15 m to device for random plaintexts. The figures show
that, for the last round, there is a closer fit. We explain it by the fact
that the side-channel signal in the last round’s traces captured at
15 m to device is stronger than the signal in the first round’s traces
captured at 15 m to device, as shown in Fig. 6. We believe that this
is the reason why the last round-based attack requires less traces.
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Figure 8: The first round traces captured at 15 m to device and by cable (scaled to [-1,1], averaged over 10K traces).

Figure 9: The last rounds traces captured at 15 m to device and by cable (scaled to [-1,1], averaged over 10K traces).

Table 7: Average number of traces required to recover sub-
key𝐾6 byCNNN41

6 from traces capturedwithout repetitions
at 15 m distance from the device under attack for the case
when Gaussian white noise with mean 𝜇 and standard devi-
ations 𝜎 is added to the training set (for 100 tests).

Device
under attack

𝜇 = 0
𝜎 = 0.0065

𝜇 = 0
𝜎 = 0.01

𝐷6 414 292
𝐷7 854 467
𝐷8 309 256
𝐷9 599 384
𝐷10 225 306

average 480.2 341.0

7.2.2 Termination conditions. Second, we change the termination
condition to the one in [16], namely checking if the average rank
reached 0.5. Table 6 shows the results for the CNNN41

6 . The second
column of Table 6 is a copy the second column of Table 5. From
Table 6 we can see that the average results for the termination
condition 𝑅(𝐾6) ≤ 0.5 are 28% worse than the ones for the majority
condition.

From the experiments 1 and 2 we can conclude that training
on traces captured through a coaxial cable contributes most to the

Table 8: 400-input CNN architecture.

Layer (Type) Output Shape Parameter #
Input (Dense) (None, 400, 1) 0
Conv 1 (Conv1D) (None, 400, 8) 128
AveragePooling 1 (None, 399, 8) 0
Conv 2 (Conv1D) (None, 399, 16) 656
AveragePooling 2 (None, 398, 16) 0
Conv 3 (Conv1D) (None, 398, 32) 2592
AveragePooling 3 (None, 397, 32) 0
Conv 4 (Conv1D) (None, 397, 64) 10304
AveragePooling 4 (None, 396, 64) 0
Flatten 1 (Flatten) (None, 25344) 0
Dense1 (Dense) (None, 300) 7603500
Output (Dense) (None, 256) 77056
Total Parameters: 7,694,236

improvement over the results of [16]. The second contributor is
the stronger side-channel signal in the last round’s traces, and the
third - the new termination condition.

7.3 Adding noise to training traces
In this experiment, we investigate if the addition of noise to training
traces captured through a coaxial cable can further improve the
classification accuracy. In this experiment, we add a small, con-
trolled amount of additive noise to the training traces with 𝑁 = 100
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Figure 10: The 110-point segment used in the experiment 1 and its location within the 400-point trace in Fig. 2.

Table 9: Average number of traces required to recover sub-
key 𝐾6 by the 400-input CNN from Table 8 for 𝑒 = 67 from
traces captured at 15 m distance from the device under at-
tack (for 100 tests). Each trace is the average of 𝑁 measure-
ments of the same encryption.

Device
under attack 𝑁 = 1 𝑁 = 10 𝑁 = 100

𝐷6 542 52 9
𝐷7 808 49 9
𝐷8 534 50 11
𝐷9 627 65 16
𝐷10 545 23 8

average 611.2 47.8 10.6

repetitions rather than reducing 𝑁 . Since traces captured without
repetitions are affected by the additive (white) noise as well as by
the multiplicative noise (interference). Averaging minimizes the
impact of both types of noise. By adding a small amount of additive
noise, we seem to help CNN generalize better without exceeding
the amount of noise it can handle.

We add to the training set T constructed as in Table 3 white
Gaussian noise with mean 𝜇 = 0 and standard deviation 𝜎 = 0.0065
and 𝜎 = 0.01. We use the resulting training set to train CNNs as
in the experiment 1. Then we test the network N41

6 on the trace
sets T̂ of size 1K captured from 𝐷6 −𝐷10 at the distance 15 m from
the device without repeating the same encryption more than once.
Table 7 lists the results.

We can see from Table 7 that the addition of noise to the training
set T further improves the ability of CNN to classify traces captured
at the distance 15 m from the device under attack. The average
numbers of traces for 𝜎 = 0.0065 and 𝜎 = 0.01 are 6% and 33%
better, respectively, than the ones in column 2 of Table 5. The

Table 10: Average number of traces required to recover sub-
key 𝐾6 by the 400-input CNN from Table 8 for 𝑒 = 67 from
traces captured without repetitions at 15 m distance from
the device under attack for the case when Gaussian white
noise with mean 𝜇 and standard deviations 𝜎 is added to the
training set (for 100 tests).

Device
under attack

𝜇 = 0
𝜎 = 0.0065

𝜇 = 0
𝜎 = 0.01

𝐷6 828 498
𝐷7 738 759
𝐷8 255 395
𝐷9 401 406
𝐷10 320 274

average 524.8 466.4

average number for 𝜎 = 0.01 is 29 times smaller that the average
number of traces 9954 required in the attack of [16] for the same
conditions.

7.4 Extending input size
The purpose of this experiment is to check if using CNNs with a
larger input size can be beneficial. Such a strategy is suggested in
some works, e.g. [10].

We performed experiments for CNNs with the input size 400
trained on 400-point traces shown at the top of Fig. 10, and also
for CNNs with the input sizes 800 and 1200 trained on the same
segment of AES encryption captured with doubled and tripled
sampling frequency, respectively. None of these network types
were better than the 110-input CNN in Table 2. In this section we
show the results for the CNN with the input size 400 which is the
best of three. Its architecture is listed in Table 8.

Session 2: Side-Channels in CPS  CPSS ’21, June 7, 2021, Virtual Event, Hong Kong

38



The 100K training set is constructed as in Table 3 and labeled
by the value of the S-box output in the last round. First, we repeat
the experiment 1. Table 9 lists the results for the best epoch, 𝑒 = 67.
We can see that the average result for 𝑁 = 1 is 19% worse than the
average result 510.6 in Table 5. It is interesting that the average
results for 𝑁 = 10 and 100 are 20% better than the results 59.4 and
13.2 in Table 5.

We also repeat the experiment 3. Table 10 lists the results for the
best epoch, 𝑒 = 67.We can see that the average results for𝜎 = 0.0065
and 𝜎 = 0.01 are 9% and 37% worse than the corresponding results
in Table 7.

8 CONCLUSION
We achieved a 20-fold improvement in the average number of traces
required for a successful attack over the previous work [14–16].
Our experiments show that training on traces captured through
a coaxial cable with some noise added is considerably more ad-
vantageous that training on traces captured at a distance from the
device under attack. We also introduced a new termination condi-
tion based on checking if the rank reaches 0 in the majority of test
sets. We quantitatively evaluated the contribution of all factors to
the improvement.

Future work includes finding the best strategy for modeling
noise added to the training traces and mounting similar attacks on
devices supporting other wireless network protocols.
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