Privacy-preserving dynamic controllers

Ming Cao

Engineering and Technology Institute
University of Groningen
The Netherlands

COVID-19 Contact Tracing Apps

The apps have been designed with privacy as a crucial priority:

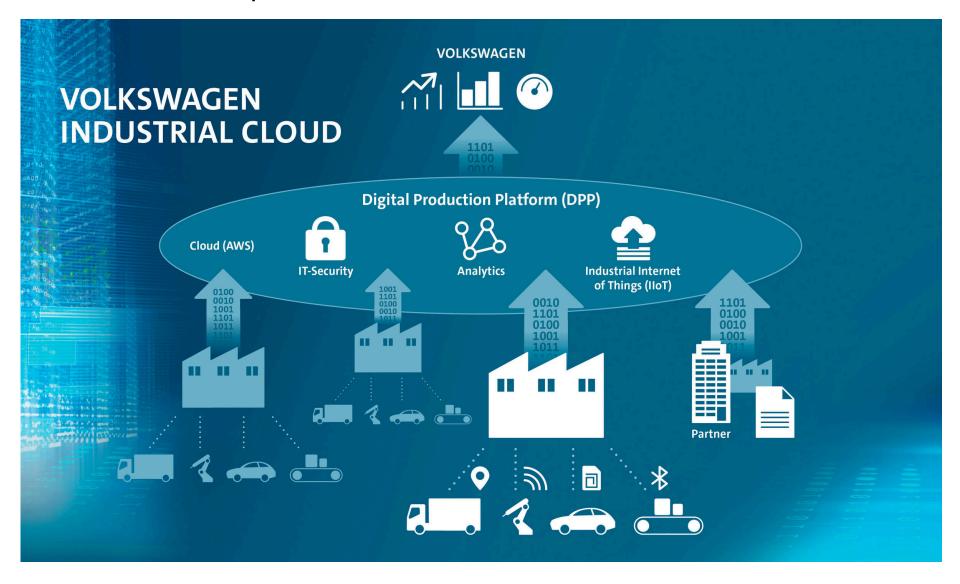
- ✓ Not using GPS location or tracking
- ✓ Not checking whether selfisolating
- ✓ Not used by law enforcement
- ✓ Not to collect personal information on the phone

Privacy fears still stop most people using COVID contact tracing apps.

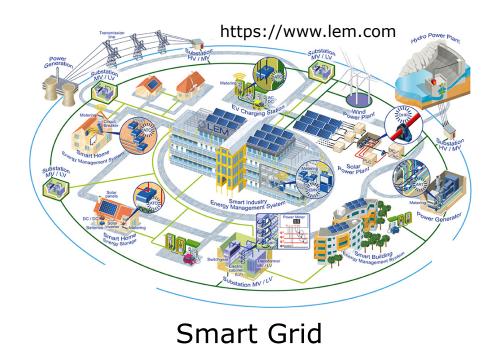
"Game-theoretic modeling of collective decision making during epidemics", Physical Review E, 2021.

"Collective patterns of social diffusion are shaped by individual inertia and trend seeking", Nature Communications, 2021.

Privacy is also of central importance for industrial data!



Privacy of Dynamical Systems



 In traditional computer science, privacy analysis of static data

 In IoT technologies, a lot of data are generatied by dynamical systems

Privacy of dynamical systems?

Fundamental Questions

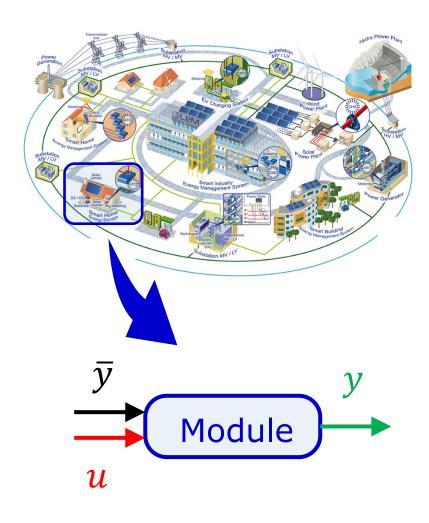
- How to anlayze privacy with tools of systems and conrol?
- Can we design a controller while addresing privacy concern?

Outline

Differential privacy and input observability

- Control design while addressing privacy concern
 - Centralized tracking control
 - Decentralized tracking control and foundamental trade-off

Privacy Analysis of Each Module



Dynamics of a module

$$x(t+1) = Ax(t) + Bu(t), x(0) = x_0$$

 $y(t) = Cx(t) + Du(t)$

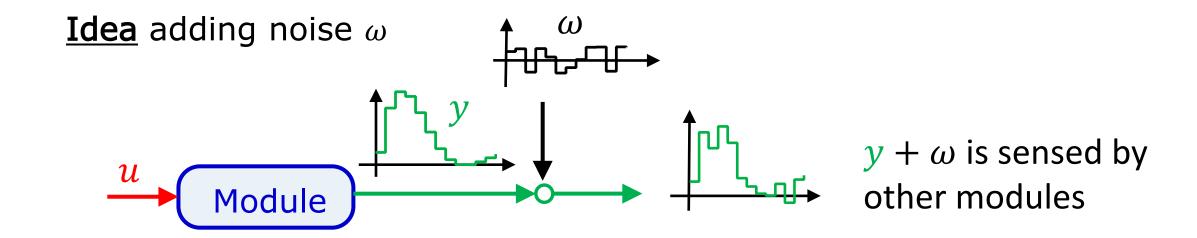
 $u(t) \in \mathbb{R}^m$: own input of the module

 $y(t) \in \mathbb{R}^p$: published signal

Question

How to protect u (and x_0) from being inferred from y?

Idea for Private Data Protection

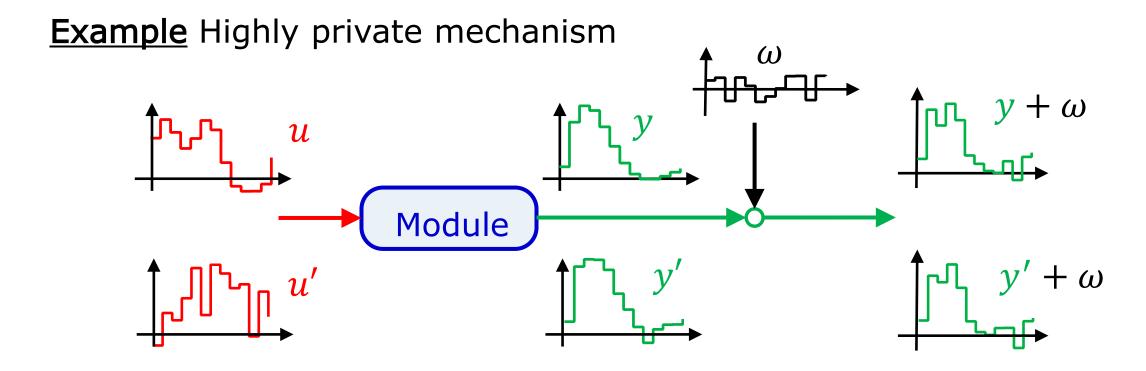


Problem

Design ω such that u is difficult to estimate from $y + \omega$ in a certain privacy level

- Problem depends on dynamics of module: Input Observability
- Criterion of privacy: Differential Privacy [Dwork et al, ICALP:06 Le Ny, Pappas, TAC:13]

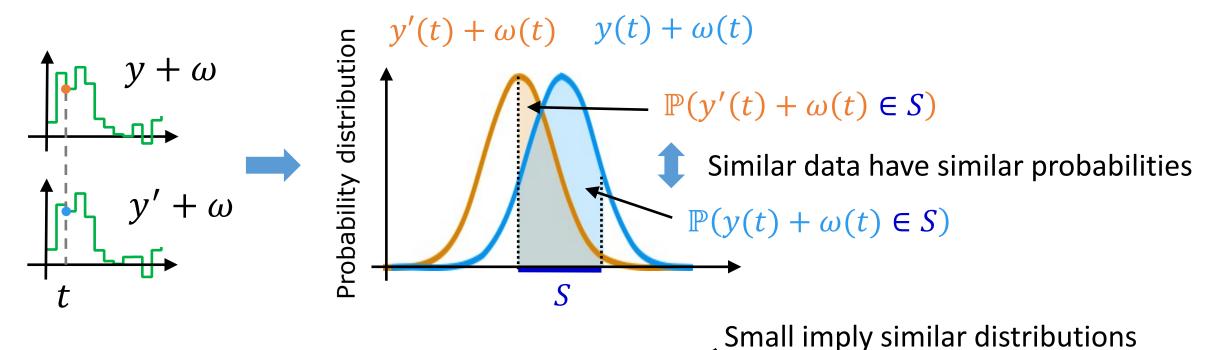
Privacy: comparing pairs of outputs



If for any input pair (u, u'), output pair $(y + \omega, y' + \omega)$ is similar then the input is difficult to be estimated from the output

Differential Privacy at a Time Instant

time instant k



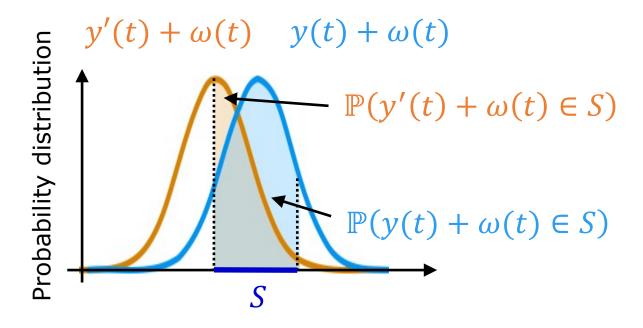
[Def] (ε, δ) -differential privacy $(\varepsilon, \delta \ge 0)$ $\mathbb{P}(y(t) + \omega(t) \in S) \le e^{\varepsilon} \mathbb{P}(y'(t) + \omega(t) \in S) + \delta \quad \forall S$

Roles of ε and δ

[Def] (ε, δ) -differential privacy

$$(\varepsilon, \delta \geq 0)$$

$$\mathbb{P}(y(t) + \omega(t) \in S) \le e^{\varepsilon} \, \mathbb{P}(y'(t) + \omega(t) \in S) + \delta \quad \forall S$$



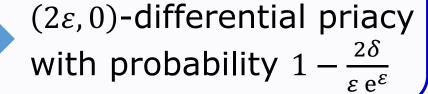
When $\delta = 0$, \log_e -distance

$$\log_{e} \mathbb{P}(y'(t) + \omega(t) \in S)$$

$$-\log_{e} \mathbb{P}(y(t) + \omega(t) \in S)$$

$$=\log_{e} \frac{\mathbb{P}(y'(t) + \omega(t) \in S)}{\mathbb{P}(y(t) + \omega(t) \in S)} \leq \varepsilon$$

(ε, δ) -differential priacy



Differential Privacy of Dynamical Systems

Signals
$$U_t = \begin{bmatrix} u(0) \\ \vdots \\ u(t) \end{bmatrix} \in \mathbb{R}^{m(t+1)}, \quad Y_t = \begin{bmatrix} y(0) \\ \vdots \\ y(t) \end{bmatrix} \in \mathbb{R}^{p(t+1)}, \quad \Omega_t = \begin{bmatrix} \omega(0) \\ \vdots \\ \omega(t) \end{bmatrix} \in \mathbb{R}^{m(t+1)}$$

[Def] (ε, δ) -differential privacy at time t

$$(\varepsilon, \delta, t, c \geq 0)$$

$$\mathbb{P}(Y_t + \Omega_t \in S) \le e^{\varepsilon} \mathbb{P}(Y_t' + \Omega_t \in S) + \delta \quad \forall S \subset \mathbb{R}^{p(t+1)}$$

for all
$$|(x_0, U_t) - (x'_0, U'_t)|_2 \le c$$

Similarity of input data (2-norm)

- Privacy criterion for (x₀, U_t)
 Small (ε, δ) imply high privacy

$$Y_{t} = \begin{bmatrix} C \\ CA \\ \vdots \\ CA^{t} \end{bmatrix} x_{0} + \begin{bmatrix} D & 0 & \cdots & 0 \\ CB & \ddots & \ddots & \vdots \\ \vdots & \ddots & D & 0 \\ CA^{t-1}B & \cdots & CB & D \end{bmatrix} U_{t}$$

$$=: O_{t}$$

$$=: N_{t}$$

Noise Design for Differential Privacy

• Multivariate Gaussian noise $\Omega_t \sim \mathcal{N}(0, \Sigma)$

[Thm] Given $\varepsilon > 0$ and $1/2 > \delta > 0$, the system is (ε, δ) -differentially private at a finite time t if

$$\lambda_{\max}^{-\frac{1}{2}}([O_t \quad N_t]^{\top} \Sigma^{-1}[O_t \quad N_t]) \ge c R(\varepsilon, \delta)$$

$$\mathrm{R}(\varepsilon,\delta)\coloneqq Q^{-1}(\delta)+\sqrt{\left(Q^{-1}(\delta)\right)^2+2\varepsilon}/2\varepsilon,\quad \mathrm{Q}(w)\coloneqq \tfrac{1}{\sqrt{2\pi}}\int_w^\infty e^{-\tfrac{v^2}{2}}\,dv,\quad Y_t=O_tx_0+N_tU_t$$

- LHS can be made arbitrary large by choosing variance Σ larege
- Condition depends on system dynamics $[O_t \ N_t]$

Variations of Differential Privacy Conditions

• i.i.d. Gaussian case: $\omega(t) \sim \mathcal{N}(0, \sigma)$

$$\sigma \ge \lambda_{\max}^{1/2} ([O_t \quad N_t]^{\mathsf{T}} [O_t \quad N_t]) c R(\varepsilon, \delta)$$

• For a stable system, condition for any $t \ge 0$:

$$\sigma \geq \left(\lambda_{\max}^{1/2}(\mathcal{O}_{\infty}) + \gamma\right) c R(\varepsilon, \delta) \qquad \begin{array}{c} \mathcal{O}_{\infty} \colon \text{observability Gamian} \\ \gamma \colon H_{\infty}\text{-norm} \end{array}$$

• i.i.d Laplace noise: $\omega(t) \sim \text{Lap}(0,2b^2)$ (ε , 0)-differential privacy at a finite time t if

$$b \ge c|[O_t \quad N_t]|_1/\varepsilon$$

Outline

Differential privacy and input observability

- Control design while addressing privacy concern
 - Centralized tracking control
 - Decentralized tracking control and foundamental trade-off

Strong Input Observability

[Def] Strong input observability

There exists a finite time T such that $(x_0, u(0))$ is uniquely determined from Y_t

Strong input observability

- \Rightarrow (x(1), u(1)) is constructed from Y_{t+1}
- $\Rightarrow u(0), u(1), ...$ are determined recursively

Specific strong input observability

If u(0), u(1), ... are known, standard observability

If x_0 is known, input observability (left invertibility)

Least Square Estimation of (x_0, U_t)

<u>Problem</u> Measured $Y_t + \Omega_t$ with i.i.d. Ω_t , $\min_{(x_0, U_t)} |(Y_t + \Omega_t) - (O_t x_0 + N_t U_t)|_2^2$

Solution
$$\begin{bmatrix} O_t & N_t \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} O_t & N_t \end{bmatrix} \begin{bmatrix} \mathbf{x}_0^* \\ \mathbf{U}_t^* \end{bmatrix} = \begin{bmatrix} O_t & N_t \end{bmatrix}^{\mathsf{T}} (Y_t + \Omega_t)$$

[Def] Strong input observability Gramian: $[O_t \ N_t]^T[O_t \ N_t]$

Quality: Strongly input observability

Nonsingurality of the Gramian

Quantity: All eigenvalues are large

⇒ highly input observable i.e. less private

Differential privacy condition: $\sigma \ge \lambda_{\max}^{1/2}([O_t \ N_t]^{\mathsf{T}}[O_t \ N_t])c\mathsf{R}(\varepsilon,\delta)$

Observations from Gramian

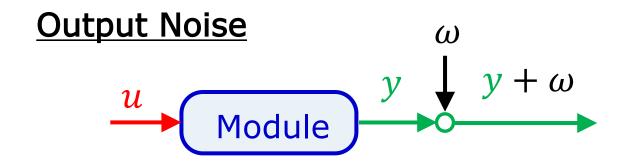
- $\lambda_{\max}([0_t \ N_t]^T[0_t \ N_t])$ is non-decreasing w.r.t t
 - More data are being collected, less private a system becomes
- ith $m \times m$ block diagonal element of $N_t^{\mathsf{T}} N_t$:

$$(N_t^{\mathsf{T}} N_t)_{i,i} \coloneqq D^{\mathsf{T}} D + \sum_{k=0}^{t-i} (CA^k B)^{\mathsf{T}} (CA^k B), i = 1, 2, ..., t$$

This is the Gramian corresponding to the initial input u(0), and $\operatorname{trace}(N_t^{\mathsf{T}} N_t) = \operatorname{trace}(N_t^{\mathsf{T}} N_t)_{1,1} + \dots + \operatorname{trace}(N_t^{\mathsf{T}} N_t)_{t,t}$

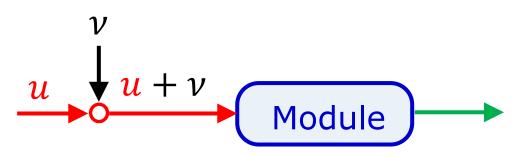
- If $(x_0, u(0))$ is easy to estimate, so is (x_0, U_t) .
- Detailed privacy analysis is doable by using subspaces corresponding to eingevalues of $\begin{bmatrix} O_t & N_t \end{bmatrix}^T \begin{bmatrix} O_t & N_t \end{bmatrix}$

Remark: Input Noise vs Output Noise



- Differential privacy level depends on $[O_t N_t]$ and w
- Data utility depends on w

Input Noise



- Differential privacy level depends on only ν
- Data utility depends on $[O_t N_t]$ and ν

The same differential privacy levels can be achieved

Summary of Differential Privacy Analysis

• Privacy criterion of (x_0, U_t) : (ε, δ) -differential privacy

$$\mathbb{P}(Y_t + \Omega_t \in S) \le e^{\varepsilon} \mathbb{P}(Y_t' + \Omega_t \in S) + \delta, \quad Y_t = O_t x_0 + N_t U_t$$

Small $\varepsilon, \delta \geq 0$ mean higher privacy

• For i.i.d. $\omega(t) \sim \mathcal{N}(0, \sigma)$, the system is (ε, δ) -differentially private if

$$\sigma \ge \lambda_{\max}^{\frac{1}{2}}([O_t \quad N_t]^{\mathsf{T}}[O_t \quad N_t])cR(\varepsilon, \delta)$$

strong input observability Gramian

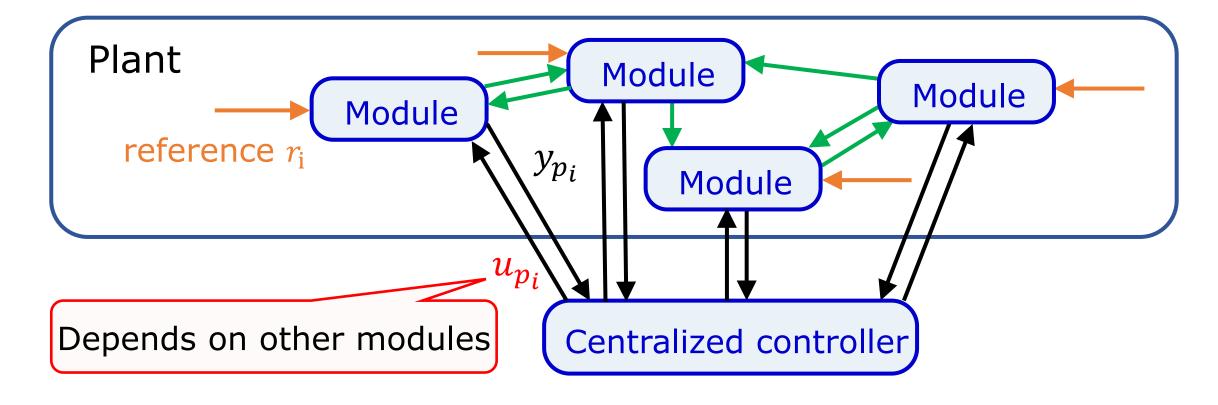
- System is highly strongly input observable
 ⇒ Large noise is needed to increase the privacy level
- Similar observation for non-i.i.d. case and even for nonlinear systems

Outline

Differential privacy and input observability

- Control design while addressing privacy concern
 - Centralized tracking control
 - Decentralized tracking control and foundamental trade-off

Problem Formulation



<u>Control objective</u> $\lim_{t\to\infty} (y_p(t) - r(t)) = 0$

 y_p : output, r: reference u_p : input

<u>Privacy concern</u> Private info. (as y_{pi} , r_i) of modules are inferred from u_{pj}

Tracking Control: Standard Assumptions

Plant

$x_p(t+1) = A_p x_p(t) + B_p u_p(t)$ $y_p(t) = C_p x_p(t) + D_p u_p(t)$

Reference generator

$$x_r(t+1) = A_r x_r(t)$$
$$r(t) = C_r x_r(t)$$

Assumptions

- 1. A_r is not Schur stable
- 2. (A_p, B_p) is stabilizable
- 3. $(\begin{bmatrix} C_p & -C_r \end{bmatrix}, \begin{bmatrix} A_p & 0 \\ 0 & A_r \end{bmatrix})$ is stabilizable
- 4. The Sylvester equation has a pair of solutions (X, U)

$$XA_r = A_p X + B_p U$$
$$0 = C_p X + D_p U - C_r$$

Standard Tracking Controller and Privacy

Standard tracking controller

Design parameters: G_1 , L

$$u_p(t) = \begin{bmatrix} G_1 & G_2 \end{bmatrix} x_c(t)$$

$$x_c(t+1) = \begin{pmatrix} \begin{bmatrix} A_p & 0 \\ 0 & A_r \end{bmatrix} + L[C_p & -C_r] + \begin{pmatrix} \begin{bmatrix} B_p \\ 0 \end{bmatrix} + LD_p \end{pmatrix} \begin{bmatrix} G_1 & G_2 \end{bmatrix} x_c(t)$$

$$-L\left(y_p(t) - r(t)\right)$$

Conditions

Stabilization: $A_p + B_p G_1$ and $\begin{bmatrix} A_p & 0 \\ 0 & A_r \end{bmatrix} + L[C_p & -C_r]$ are Schur stable Tracking: $G_2 = U - G_1 X$

Privacy requirment Estimating y_p from u_p is difficult

inputs of controller outputs of controller

Privacy analysis of controller dynamics

Storagegy for Privacy-protection

Ideal: Private inf. contained in y_p and r belong to input unobservable subspace

NP hard

Differential privacy condition of stable system for any $t \geq 0$:

$$\sigma \geq \gamma c R(\varepsilon, \delta)$$
 $\gamma : H_{\infty}$ -norm $\omega(t) \sim \mathcal{N}(\mu, \sigma)$

$$\gamma$$
: H_{∞} -norm

$$\omega(t) \sim \mathcal{N}(\mu, \sigma)$$

Strategy for privacy-protection

Design a tracking controller having a small H_{∞} -norm

Both tracking controller and closed-loop system need to be Schur stable

Strong stabilization problem

Negative Result for Strong Stabilization

Plant
$$x_p(t+1) = A_p x_p(t) + B_p u_p(t)$$
 Reference $x_r(t+1) = A_r x_r(t)$ $y_p(t) = C_p x_p(t) + D_p u_p(t)$ $r(t) = C_r x_r(t)$

[Thm] If $D_p = 0$, the tracking controller cannot be Schur stable

Standard tracking controller with $D_p = 0$

$$u_p(t) = \begin{bmatrix} G_1 & G_2 \end{bmatrix} x_c(t)$$

$$x_c(t+1) = \begin{pmatrix} \begin{bmatrix} A_p & 0 \\ 0 & A_r \end{bmatrix} + L \begin{bmatrix} C_p & -C_r \end{bmatrix} + \begin{bmatrix} B_p \\ 0 \end{bmatrix} \begin{bmatrix} G_1 & G_2 \end{bmatrix} x_c(t) - L \left(y_p(t) - r(t) \right)$$

 A_r is not Schur stable (Assumption 1) nor stabilizable (by PBH test)

 A_r does not appear if we use x_r directly

Proposed Tracking controller

Proposed tracking controller

Design parameters: G_1 , L

$$u_p(t) = G_1 x_c(t) + G_2 x_r(t)$$

$$x_c(t+1) = (A_p + (B_p + LD_p)G_1 + LC_p)x_c(t) + (B_p + LD_p)G_2 x_r(t) - Ly_p(t)$$

Conditions for tracking

Stabilization: $A_p + B_p G_1$ and $A_p + LC_p$ are Schur stable

Tracking: $G_2 = U - G_1 X$

Privacy requirement

Protecting $x_r(t)$ is also doable

 H_{∞} -norm of the controller from y_p to u_p is small

Privacy-preserving control design is formulated as a strong stabilization problem

Privacy-preserving Dynamic Controller

Design procedure by LMIs

1. Find G_1 stabilizing $A_p + B_p G_1$

For finding G_1 , L simultaneously we need to solve BMI

2. Find $L:=P^{-1}\hat{L}$ by solving

$$\begin{bmatrix} P & * \\ (PA_p + \hat{L}C_p)^T & P \end{bmatrix} > 0$$
 Stability of $A_p + LC_p$

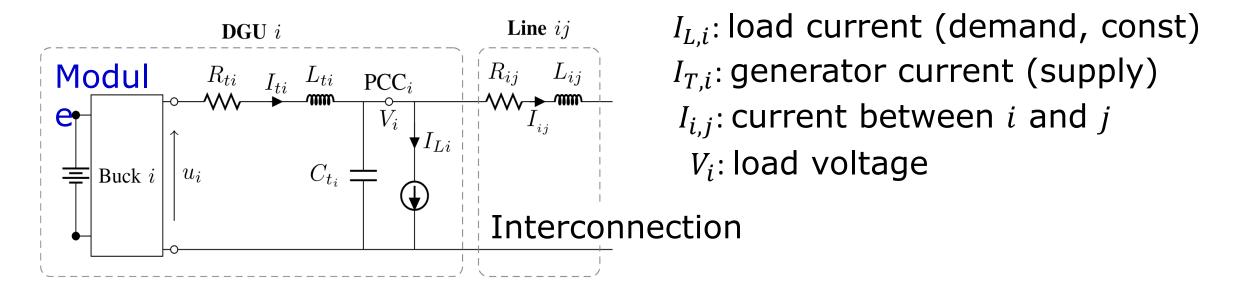
$$\begin{bmatrix} P & * * * * * \\ 0 & \gamma^2 I & * * \\ P(A_p + B_p G_1) + \hat{L}(C_p + D_p G_1) & -\hat{L} & P & * \\ G_1 & 0 & 0 & I \end{bmatrix} > 0$$

$$\begin{bmatrix} \gamma \text{ is designed based on} \\ \sigma \geq \gamma c R(\varepsilon, \delta) \\ \omega \sim \mathcal{N}(0, \sigma) \end{bmatrix}$$

 H_{∞} -norm from y_p to u_p is less than γ

3. Designed control input: $u_p + \omega$

Example: DC Microgrids



$$L_{i}\dot{I}_{i} = -R_{i}I_{i} - V_{i} + u_{i}$$

$$C_{i}\dot{V}_{i} = I_{i} - I_{L,i} - \sum_{j \in N_{i}} I_{i,j}$$

$$L_{i,j}\dot{I}_{i,j} = V_{i} - V_{j} - R_{i,j}I_{i,j}$$

$$y_{i,1} = V_{i}, \ y_{i,2} = I_{i}$$

Control objective

$$\lim_{t\to\infty}I_i(t)=L_{L,i}\quad \lim_{t\to\infty}V_i(t)=V^*$$

Private info. against others: $I_{T,i}$

Example: DC Microgrids (Scenario)

Sampling period for descritization: $10^{-3}[s]$

Physical parameters

[Cucuzzella et al., IEEE TCST: 19]

$$N=2$$
 (2 user)

$$R_i = 0.2[\Omega]$$

$$R_{i,i} = 70 [\mathrm{m}\Omega]$$

$$L_i = 1.8 [mH]$$

$$C_i = 2.2 [mF]$$

$$V^* = 380[V]$$

Control objective

$$\lim_{t\to\infty}I_i(t)=0\qquad\lim_{t\to\infty}V_i(t)=V^*$$

Reference generator

$$x_r(t+1) = x_r(t)$$
$$y_r(t) = x_r(t)$$

Scenario

User 1 starts to use more electricity

Initial conditions

$$I_1(0) = -4[A], I_2(0) = 0[A]$$

 $I_{1,2}(0) = 0[A], V_i(0) = 380[V], i = 1,2$

Privacy-preserving Tracking Controller

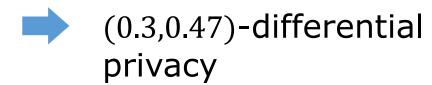
Computing G_1 based on optimal control: $J = \sum_{t=0}^{\infty} |x_p(t)|^2 + |u_p(t)|^2$

$$G_1 = \begin{bmatrix} -0.85 & 0.037 & -0.461 & -0.007 & 0.229 \\ 0.037 & -0.85 & -0.007 & -0.461 & -0.229 \end{bmatrix}$$

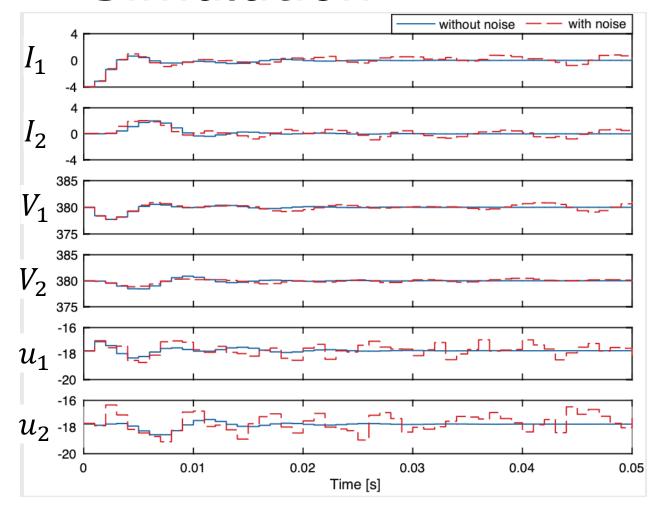
Finding *L* based on LMIs for $\gamma = 0.365$

$$L = \begin{bmatrix} -0.193 & 0.0088 & 0.0828 & 0.0111 \\ 0.0088 & -0.193 & 0.0111 & 0.0828 \\ -0.0717 & 0.0072 & -0.134 & -0.0129 \\ 0.0072 & -0.0717 & -0.0129 & -0.134 \\ 0.0253 & -0.0253 & -0.0504 & 0.0504 \end{bmatrix}$$

i.i.d. Gaussian noise with
$$\Sigma = \begin{bmatrix} 8.7 & 2.7 \\ 2.7 & 3.2 \end{bmatrix}$$



Simulation



Noise is not added

 user 2 can infer that use 1 consumes electricity

Noise is added

- electricity consumptions are masked
- small degeneration of control performance

<u>Trade off</u> Privacy and Control performances

Summary of Centralized Control

Proposed tracking controller

Design parameters: G_1, L, ω

$$u_p(t) = G_1 x_c(t) + G_2 x_r(t) + \omega(t)$$

$$x_c(t+1) = (A_p + (B_p + LD_p)G_1 + LC_p)x_c(t) + (B_p + LD_p)G_2 x_r(t) - Ly_p(t)$$

Requirements

Strong stabilization by LMIs

Stabilization: $A_p + B_p G_1$ and $A_p + LC_p$ are Schur stable

Tracking: $G_2 = U - G_1X$

Privacy: H_{∞} -norm of the controller from y_p to u_p is smaller than γ

 γ is designed based on $\sigma \geq \gamma c R(\varepsilon, \delta)$, $\omega \sim \mathcal{N}(0, \sigma)$

Trade off

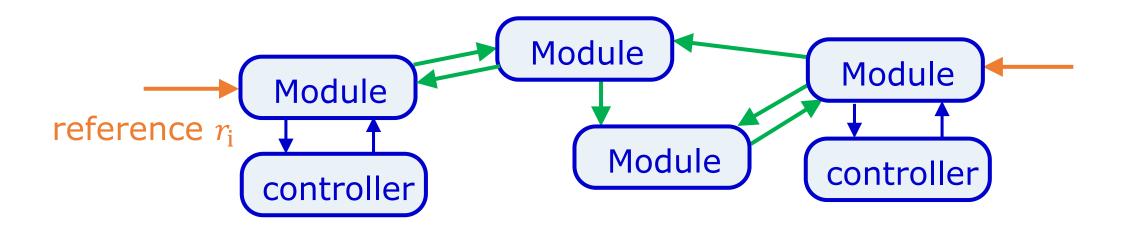
Privacy and Control performances

Outline

Differential privacy and input observability

- Control design while addressing privacy concern
 - Centralized tracking control
 - Decentralized tracking control and foundamental trade-off

Problem Formulation Comformed to IoT



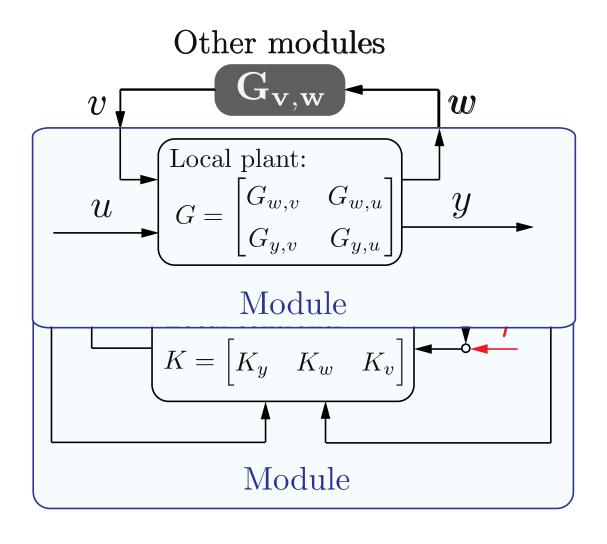
Generally, each module DOES NOT know models of other modules

Control objective reference tracking for a module

Privacy objective reference needs to be private

How to design a local controller for each module?

Mathematical Formulation for Tracking



Discrete-time linear systems

Objective:
$$\lim_{t\to\infty} (y-r) = 0$$

For local controller design, G, r, y, u, w, v is available but not $G_{v,w}$

Local controller:

$$u = \begin{bmatrix} K_y & K_w & K_v \end{bmatrix} \begin{bmatrix} y - r \\ w \\ v \end{bmatrix}$$

Assumptions

- G and interconnection of G and $G_{v,w}$ are internally stable
- r is constant

Stability Conditions for Local Controllers

From Youla parametrization, the stabilizing controllers of the module

$$[K_y K_w K_v] = (I + Q_y G_{y,u} + Q_w G_{w,u})^{-1} [Q_y Q_w Q_v]$$

Implimentation of a local controller can destroy internal stability of the interconnected system

Retrofit control [Ishizaki et al., Automatica: 19]

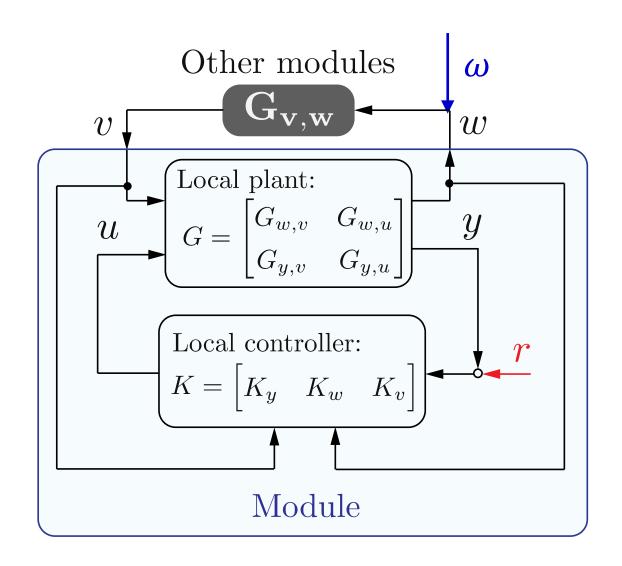
[Thm] Necessary and sufficient conditions for tracking arbitrary constant reference

Stability:
$$G_{w,u}(Q_yG_{y,u} + Q_wG_{w,u} + Q_v) = 0$$

Tracking:
$$I + \overline{\mathbf{G}}_{\mathbf{v},\mathbf{r}}(1) = 0$$

$$\overline{\mathbf{G}}_{\mathbf{y},\mathbf{r}} \coloneqq G_{\mathbf{y},u} + \left(G_{\mathbf{y},v} + G_{\mathbf{y},u} \left(Q_{\mathbf{y}} G_{\mathbf{y},u} + Q_{\mathbf{w}} G_{\mathbf{w},u} + Q_{\mathbf{v}}\right)\right) \left(I - \mathbf{G}_{\mathbf{v},\mathbf{w}} G_{\mathbf{w},v}\right)^{-1} \mathbf{G}_{\mathbf{v},\mathbf{w}} G_{\mathbf{w},u}$$

Privacy Problem of a Module



r can be inferred by other modules from w

We adding noise ω to w to protect from r being infered

How to design ω and K?

(ε, δ) -differential privacy

$$\mathbb{P}(y(t) + \omega(t) \in S)$$

$$\leq e^{\varepsilon} \mathbb{P}(y'(t) + \omega(t) \in S) + \delta$$

$$(\varepsilon, \delta \geq 0)$$

Differential Privacy of Dynamical Systems

Differential privacy is a quantitative criterion for sensitivity of the system with respect to input R_t

$$R_t = \begin{bmatrix} r(0) \\ \vdots \\ r(t) \end{bmatrix} \in \mathbb{R}^{m(t+1)}$$

Induced norm of system (gain) evaluates sensitivity

$$\|\Sigma\|_p \coloneqq \sup_t \left(\sup_{r_t \neq 0} \frac{|W_t|_p}{|R_t|_p} \right)$$

$$W_t = \begin{bmatrix} w(0) \\ \vdots \\ w(t) \end{bmatrix} \in \mathbb{R}^{p(t+1)}$$

[Thm] For i.i.d. Lapalace noise $\omega \sim \text{Lap}\,(\mu,2b^2)$, the mechanism is

(
$$\varepsilon$$
,0)-differentially private at any t if and only if $b \ge \frac{c}{\varepsilon} ||\Sigma||_1$, $\forall |R_t - R_t'|_1 \le c$

Peformance Limits for Laplace Mechanism

For the same b, making $\|\Sigma\|_1$ small increases the privacy level

Transfer function from r to w: $-(I - G_{w,v}\mathbf{G_{v,w}})^{-1}G_{w,u}\mathbf{Q_{y}}$

It seems $\|\Sigma\|_1$ can be made arbitrary small by tuning Q_y

However, there are constraints for tuning parameters

$$G_{w,u}(Q_yG_{y,u} + Q_wG_{w,u} + Q_v) = 0, I + \overline{\mathbf{G}}_{y,r}(1) = 0$$

[Thm] If i.i.d. Lapalace mechanism with $\omega \sim \text{Lap}(\mu, 2b^2)$ is ε -differentially private at any t, then

$$\varepsilon \ge \frac{c}{b} \left| \left(I - G_{w,v}(1) \mathbf{G}_{\mathbf{v},\mathbf{w}}(1) \right)^{-1} G_{w,u}(1) \widehat{\mathbf{G}}_{\mathbf{y},\mathbf{r}}^{-1}(1) \right|_{1}, \quad \forall |R_{t} - R'_{t}|_{1} \le c$$

Example: DC Microgrids

Node i

$$L_{i}\dot{I}_{i} = -R_{i}I_{i} - V_{i} + u_{i}$$

$$C_{i}\dot{V}_{i} = I_{i} - I_{L,i} - \sum_{j \in N_{i}} R_{i,j}(V_{i} - V_{j})$$

$$y_{i} = I_{i}$$
other
modules

I_i : generator current

 V_i : load voltage

 $I_{L.i}$: load current (constant)

Local controller

$$u_{i} = K_{y}I_{i} + K_{w}V_{i} + \sum_{j \in N_{i}} K_{v_{j}}V_{j}, j \in N_{i}$$

$$[K_{y} \quad K_{w} \quad K_{v}]$$

$$= (I + Q_{y}G_{y,u} + Q_{w}G_{w,u})^{-1}$$

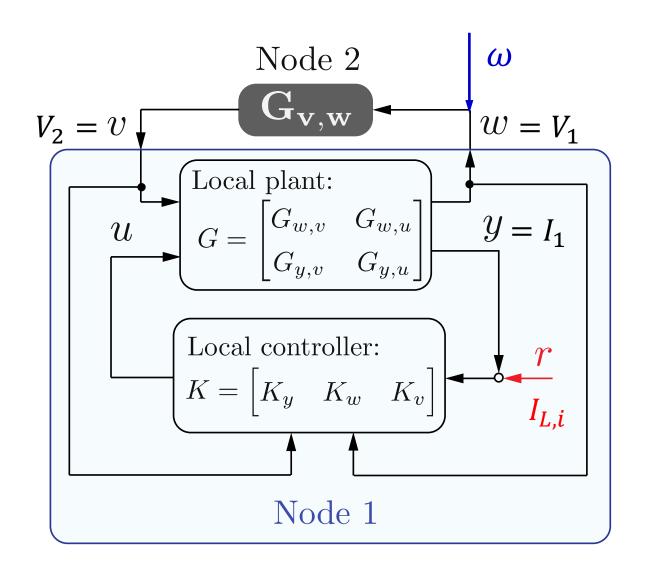
$$[Q_{v} \quad Q_{w} \quad Q_{v}]$$

Control objective

$$\lim_{t\to\infty}I_i(t)=L_{L,i}\quad \lim_{t\to\infty}V_i(t)=V^*$$

Private info. against others: $I_{L,i}$

Example: DC Microgrids when n = 2



Controller design for node 1

Stability: $Q_y G_{y,u} + Q_w G_{w,u} + Q_v = 0$

Tracking: $1 + 1.33Q_v(1) = 0$

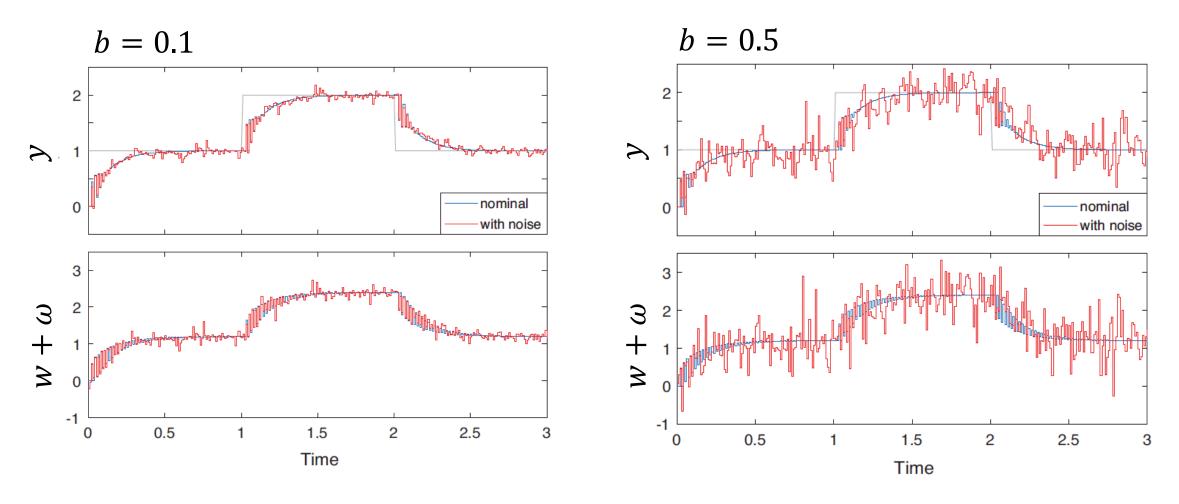
Lower bound on $\|\Sigma\|_1$: 0.25

Lower bound on Differential privacy level of Laplace mechanism

$$\varepsilon \geq 0.25c/b$$

for $\omega \sim \text{Lap}(\mu, 2b^2)$

Simulation



Because of privacy limit, it is impossible to balance tracking and privacy performance by adding noise in modular control design

Summary of Decentrailzed Control

Local tracking controller

$$[K_y \quad K_w \quad K_v] = (I + Q_y G_{y,u} + Q_w G_{w,u})^{-1} [Q_y \quad Q_w \quad Q_v]$$

Stability:
$$G_{w,u}(Q_yG_{y,u} + Q_wG_{w,u} + Q_v) = 0$$

Tracking:
$$I + \overline{\mathbf{G}}_{\mathbf{y},\mathbf{r}}(1) = 0$$

Design parameters: Q_v, Q_w, Q_v

$$Q_y, Q_w, Q_v$$

Ceiling value of differential privacy level with $\omega \sim \text{Lap}(\mu, 2b^2)$

$$\varepsilon \ge \frac{c}{b} \left| \left(I - G_{w,v}(1) \mathbf{G}_{\mathbf{v},\mathbf{w}}(1) \right)^{-1} G_{w,u}(1) \ \widehat{\mathbf{G}}_{\mathbf{y},\mathbf{r}}^{-1}(1) \right|_{1}, \quad \forall |R_{t} - R'_{t}|_{1} \le c$$

<u>Tracking control performance</u>

$$\lim_{t \to \infty} \mathbb{E}[|y(t) - r|_2^2] = 2b^2 ||\Sigma||_2$$

Trade off

Privacy vs Control

Summary of Talk

Privacy of dynamial system is input observability under noise

- Condition for differential privacy
- ➤ Highly input observable ⇔ Less private

Centralized preivacy-preserving tracking control design

> LMI formulation as a strong stabilization problem

Decentralized preivacy-preserving tracking control design

Ceiling value of differential privacy level

Publications

- 1. Y. Kawano, M. Cao, "Design of privacy-preserving dynamic controllers," IEEE TAC 2020
- 2. Y. Kawano, K. Kashima, M. Cao, "Modular control under privacy protection: Fundamental trade-offs," Automatica 2021