TECoSA Seminar, June 3, 2021

Deterministic Reactive Software for
Embedded, Edge, and Cloud Systems

Marten Lohstroh
Advisor: Prof. Edward A. Lee

Computational vs. Reactive Systems

Computational Reactive
Behavior transformational interactive
Termination goal exception
Correctness input/output trace
Composition sequential/interleaving concurrent
Time performance correctness

Manna, Z., & Pnueli, A. (1992). Modeling Real Concurrency. In The Temporal Logic of Reactive and Concurrent Systems (pp. 103-175). Springer, New York, NY.

Background image: Drawings of Harrison's H4 chronometer of 1761, published in The principles of Mr Harrison's time-keeper, 1767.

Cyber-Physical Systems (CPSs)

g Latus \nformau%

o

How do we program these things?

Devices in the physical world Edge nodes
s [
»",- = v NS ~
‘;"‘:' : r 0 1 & 7
= &

Roedback, peciso™®

Computational | Network | Computational
Platform Fabric Platform

Physical
plant

The major challenge:
Integrating complex
subsystems with
adequate reliability,
repeatability, and
testability.

andlll /1

Biviae L
L %, —-—a { .
. .1 :"-"}“ Py L".L

-v(' i ﬁ ..‘

Security

Carl Hewitt

Gul Agha

Unlike previous models of computation,
the actor model was inspired by physics.

The actor model adopts the philosophy that everything is an actor. This is
similar to the everything is an object philosophy used by some object-oriented
programming languages.

An actor is a computational entity that, in response to a message it receives,
can concurrently:

e send a finite number of messages to other actors;
® create a finite number of new actors;
e designate the behavior to be used for the next message it receives.

There is no assumed sequence ‘o the above actions and they could be carried
out in parallel. (Source: Wikipedia)

Models of Computation (MoCs)

Useful semantics imply
constraints on designers

— Edward A. Lee

Usable design practice
implies: “freedom from
choice” — Alberto
Sangiovanni-Vincentelli

Photo credit: Rusi Mchedlishvili

A model is deterministic if, given the initial state and

§ | the inputs, the model defines exactly one behavior.

_+ Determinism

7/

** Enables testing and more tractable analysis

/

% Makes simulation more useful

/7

% Allows verification to scale better

Concurrency, Distribution are Necessary

% Performance, scalability, flexibility, complexity
> The "Cyber" part of CPS is getting more complex
% Dominant parallel and distributed programming
paradigms have relinquished determinism:
"everything is asynchronous"
> Actors, publish-subscribe, service-oriented
architectures, distributed shared memory
> Even in safety-critical domains: e.g., ROS2,
Autosar Adaptive Platform?, etc.

Menard, Christian, et al. "Achieving determinism in adaptive AUTOSAR." 2020 Design, Automation & Test in
Europe Conference & Exhibition (DATE). IEEE, 2020. 8

Leverage Principles of DE

. Taxonom
% DE is formally based on i y
SR, but Ptolemy I PR
)
leverages causality

Modal Models

information to avoid
expensive fixpoint

computation
** Reactors: be sSsma rt about {((Discrete Event) ((Synchronous Reactive)
the grain at which

dependencies are /On Language Design: [You] should
declared and h "have excellent judgment in choosing
eclared and ensure they the best features”, but should not

are conservative but not “include untried ideas of [your] own.

too conservative [Your] task is consolidation, not
kinnovation" — C.A.R Hoare

10

The PL Popularity Contest

34.97

0g847HVwRSI

Visual Basic

Programming

[P Languages

1965-2019

‘L Popular

Delohi 5.48

Source: Data is Beautiful (Youtube Channel).

https://www.voutube.com/watch?v

Source: Data is Beautiful (Youtube Channel).

https://www.youtube.com/watch?v=0g847HVwRSI

/A

- ReflexGame.If £2

106
107+
108
109
110
111
112
113
114 }

reaction(shutdown) {=

=}

if (self->count > 0) {

printf("\nkxkxx* Average response time: %d.\n", self->

} else {

printf("\nkxxx No attempts.\n");

115=main reactor ReflexGame {
p = new RandomSource();
g = new GetUserInput();
p.out —> g.prompt;
g.another -> p.another;

116
117
118
119
120 }
121
122 |

Tasks

Error Log Diagram &2

ReflexGame

GetUserlnput

Rando

O- T

O~ 1

prompt

>

7
-3

-

VAN

J\L

mSource
2
E out

! min_time

H

H

Lingua Franca: It's About Time

Verbatim target
code

Reactor-oriented
composition
layer

Interactive
Visualization

12

Compiler Toolchain

Parse and
Validate

Generate Invoke target

Y

target code compiler

Report L

errors ‘ no

13

Logical Time and Physical Time

g G R \\"//

Logical Time Physical Time

% Steps or 'ticks' ¢ Measurements
% Discrete “ External events & Continuous
% Absolute Deadlines % Relativistic
Simultaneity % Federation Simultaneity
* Fault handling

The Persistence of Memory — Salvador Dali

C {timeout: 1 155
3@ Main {
ramp = Ramp() ;
delay = Delay();
PELNE = Print();

ramp.y -> delay.x;
delay.y -> print.x;

}
11© Ramp {
¥ t(0, 100);

y:int;
14 count:int(0);
15@ (L) =ty =
' SET(y, self->count);
self->count++;
=}
}

(0, 100msec)

Delay {

a(50 Eint;
XNk
y:int;
(a) >y {=

SET(y, a->value);

(x) -> a {=
schedule int(a, 0, x->value);

get;e{ébéed_logical_time(),
get elapsed physical time(), x->value);

Delay,

50msec

Logical Actions

[marten@yoga Delayl$ lfc Delay.lf
¥rxxxxxx filename: Delay

rppkkkkk sourceFile: /home/marten/git/lingua-franca/example/Delay/Delay.1f
Rrxxxxx% directory: /home/marten/git/lingua-franca/example/Delay

rrkkokkokk mode: STANDALONE

Generating code for: file:/home/marten/git/lingua-franca/example/Delay/Delay.lf
In directory: /home/marten/git/lingua-franca/example/Delay

Executing command: gcc -02 src-gen/Delay.c -o bin/Delay

Code generation finished.

[marten@yoga Delay]$ bin/Delay

---- Start execution at time Mon Sep 14 14:18:59 2020

---- plus 601}288J78 nangseconds.
Logical time: |50000000, Physical time
Logical time: |150000000,f Physical tim
Logical time: 250000000, Physical tim
Logical time: |350000000,] Physical tim
Logical time: |450000000,] Physical tim
Logical time: |550000000,] Physical tim
Logical time: |650000000,f Physical tim
Logical time: 750000000, Physical tim
Logical time: |850000000,] Physical timgq 850124282] Value:
Logical time: |950000000,) Physical timgq 950089670] Value:
---- Elapsed logical time (in nsec): 1,000,000,000

---- Elapsed physical time (in nsec): _1,000,130,940
[marten@yoga Delay]$ |

50096786, Yalue: O
150099592 Value:
250123369 Value:
350128015) Value:
450088289 value:
550136789 Value:
650144220 Value:
750147670 Value:

OCoo~NOOULEAE WN -

Main {
ramp = Ramp() ; Main {
delay Delay(); ramp = Ramp() ;
print Print(); print = Print();
ramp.y -> delay.Xx; ramp.y -> print.x
delay.y -> print.x;

Main

Ramp »— 50msec /— print
y X

17

1 7© () -> response {=
pthread t thread id;
pthread create(&thread id, NULL,
SenSOE { : &read input, response
= ‘)

void* read input(void* response) {)2 printf("Press Enter to produce a'
"sensor value.\n");

o0

} =
=} ,

)6© (response) -> vy {=
y:bool; ; printf("Reacting to physical
response; i "action at %Llld\n",

get_elapsed_iogizgi_time());
SET(y, true);

Sensor

Physical Actions

Determinism

A model is deterministic if, given the initial state and
the inputs, the model defines exactly one behavior.

7/

% Tags assigned to events scheduled through a
physical action are treated as inputs

*» LF ensures that the logical time never gets

ahead of physical time; further processing is

exclusively determined by tags

Analysis { 8 Actuator {
x:bool; , x:bool;
y:bool; e (x) {=

do work:bool(false); : nstant t 1 = get elapsed logical time();
(x) ->vy {= instant t p = get elapsed physical time();

if (self->do work L N ¢ f ("Actuating... Logical time: %lld
ing for 50€ TR ’ time ag: :

printf("n ing fc
usleep(500);

} else { () {=

printf("Skipping work!\n"); instant_t‘d = get elapsed physical time()
} ' - get elapsed logical time();

self->do work = !self->do work; prineh(*o 1!
SET(y, true); - T > t+ 500 usec | by %1

d, d-500000);

Deadlines

Deadlines

-

Determinism

A model is deterministic if, given the initial state and
the inputs, the model defines exactly one behavior.

** Deadlines admit nondeterminism; the
program is only deterministic if no deadlines
are violated

*» Dependent on factors outside the semantics
of LF; deadline reactions are fault handlers

22

15;
16:
17:
18:
19:
20:
213
22
23;
24:

Scheduling

if readyForExec # () then

n < SELECT(readyForExec); execSet, Qr < execSet U {n}, Or \ {n}
if A(n) = LV 71 (CURRENTTAG()) + A(n) < PHYSICALTIME() then

RUNINTHREAD(n)
else
RUNINTHREAD(BAa(n))
end if
else
WAITUNTILNUMBEROFIDLETHREADSHASINCREASED()
end if

23

Automatically Exposed Parallelism

ScatterGather
Computation
’. ’
me s e
Computation Destination
-,
Ot el
Source in out _LD
out| Computation 5
(0, 200msec) D I H
in out| jn3 i
Computation
’ >_

Figure 4.3: Diagram of an LF program realizing a typical scatter/gather pattern.

Pipeline

Source Computation Computation Computation Sink

(offset, period)

Figure 4.4: Diagram of an LF program that is easy to execute in parallel using pipelining.
24

(foo.y) -> a {=

FooBar schedule(a, foo.y->value);
foo : Foo——V\—bar : Bar (a) -> bar.x {=
y X SET(bar.x, a->value);

FooBar

foo : Foo>;---E>---ﬁ----E>---)—(> bar : Bar

25

Accessing Dependencies at Runtime

[=0 [=3
1 =100, i b
[=0 =2 [=4
it =104 t=1ls i1=1111,

Y [| g S 1 N
i — 11001, i = 11001, i = 11000, i — 10000, =TI T

Figure 4.5: Example reaction graph with assigned levels and IDs

26

Runtime Overhead

Ping(count:int(1000000)) {
receive:int; Microbenchmark: PingPong
send:int; ,
pingsLeft'int(count) . B Akka | Cpp C (single-theaded) [C (24 threads)
serve; 00
(, serve) -> send S
SET(send, self->pingsLeft--); % 600
Q
- ki
(receive) -> serve {= z
if (self->pingsLeft > 0) { s A0
schedule(serve, 0); =
} else { 2 200
request stop(); £
1 -
40 80 120 160 200
Pings x 103
PingPong
pong : Pong Savina - An Actor Benchmark
Suite. Shams Imam, Vivek
<>----E> . . Sarkar. 4th International
pINg : ng Workshop on Programming

based on Actors, Agents, and
receive send receive - ecentrafized Lontrol {ALERE:

i 2014), October 2014.

Parallel Execution

(inMaster) -> outMaster {= : : : >
Parallelism Benchmark: Trapezoidal Approximation

double r = inMaster->value.r;

double 1 = inMaster->value.l; B Akka [Cpp C (24 threads)

double h inMaster->value.h;

int n = (int)(((r - 1) / h)) 1o
double accumArea = 0.0;
2 1000
int i = 0; €
while(i < n) { 3
double 1x § 750
double rx E
@
double ly : E 500
double ry ; S
double area = 0.5 * (ly + ry) * h; § 250
accumArea += area; o
T F=R 0
} 100 200 300 400 500
SET (outMaster, accumArea); Pieces x 10°5

ApproximateTrapezoid

OD master : Master
>__
inWorkers E workers : Worker

O"“E““A““Et outWorkers inMaste r>-Z> i

[numWorkers]

outMaster

Scaling on a 6-core Machine (24 hwt)

Scaling of Trapezoidal Approximation

B C (single-threaded) [C (multi-threaded)

1250
1000
750
500
250 I
0 B o =
1 2 4 8 16

32

Execution time (milliseconds)

Number of threads

29

.

JB=1 Mutations
& N

A reactorr is a listr = (I[,0,A,SS N, M, R, P,{e,0})
M C N a set of mutations,

]
/

Mutations

Mutations are reactions that have the capability to structurally change a reactor (specifically:
R and N') during the course of its execution. These changes can be carried out using the
following API extension that is available to mutations:

e CREATE: Creates a new reactor instance given a reference to a reactor class;
e DELETE: Deletes the reactor identified by a given references from its container;
e CONNECT: Connects the ports of two reactors; and

e DISCONNECT: Disconnects the ports of two reactors.

30

Federated LF Programs

(@)

Federation localhost: !
Foo() foo.host: -
Bar() bar.host: -

Baz() baz.host: :

-> bar.x;
-> baz.z;
-> baz.x;

N X

<

Federation
',fi_J————i>[353r ""'1__31'>
Foo a 4 Baz
P>— —>»
V4 Z

31

Federation: A Multiplicity of Timelines

Centralized Coordination

Central coordinator

> controls advancement of logical time
> relays messages between federates
> forms a performance bottleneck

> ...and also a single point of failure

33

Distributed Coordination: PTIDES*

How long

Federation hauld
ait?
»X_|—>Bal’ O -
Foo % o7
>—
y4

Safe-to-process

<— STP threshold —>:
threshold assumes

| |

| |

@ # —

XN\ Z \F* W : TFoo bounds on:

! : ¢ > T > Execution times

: \ L Z/XJ: Baz

: — @ @ — > Network latency

| | X y I TB

/\ /\ | > ar > CIOCk

Zeex e 1 t) -

. . | synchronization
error

Zhao, Yang, Jie Liu, and Edward A. Lee. "A programming model for time-synchronized distributed real-time systems."
RTAS '07. IEEE, 2007.

Time: Not Only For Real-Time Systems

A semantics of logical time provides a
natural framework for reasoning about
concurrency

Makes some difficult problems easy

Enables quantified evaluation of the tradeoff
between consistency and availability

35

Example: Cigarette Smokers Problem?

! Due to Suhas Patil (1971)

A cigarette requires three ingredients to
make and smoke: tobacco, paper, and
matches.

Each smoker has an infinite supply of one
ingredient

An agent arbitrarily puts two ingredients on
the table, waits until one smoker has smoked
Each smoker has to acquire two locks before
being able to smoke; How to avoid deadlock?

36

Smokers

matches

paper

matches

Agent paper
P
E i tobacco tobacco
: i S o
5 i | paper
N > =
trigger matches %
matches
-
paper
tobacco

o e e

tobacco

R

Smoker

Smoker

Smoker

DA T

Cigarette Smokers in Lingua Franca

Smokers
execute
concurrently
Logical notion
of
simultaneity
drastically
simplifies the
required
coordination
logic!

37

Example: Replicated Database®

! Inspired by Lamport (1984)

Consistency

a : Platform

¢ : Client -
r : Replica

query
O3 -
query
(0, 150msec) ’..-....E
remote_update = i

_> __:
reply E Iocal_update’- W
current
@ T2 » > »b : Platformp———
update

publish update publish
(0, 100msec)

update

Strong consistency. When federated, this comes at the cost of availability (i.e., a
physical time delay) bounded from below by the network latency between the two

platforms!
38

oo
oo
oo
oo
oo
oo
oo
oo
oo
oo

Future Ongoing/Work

Expand on quantified CAP Theorem

More thorough performance evaluation
Improve runtime performance

More robust distributed execution
Integration with ROS/AUTOWARE
Security

Implement runtime support for mutations
Target bare-metal FlexPRET

Preemptive EDF

WCET tools in the compiler?

39

oo
oo
oo
oo
oo
oo
oo
oo

Future Ongoing/Work (Continued)

Rust target

Integration with AUTOSAR

Support for other IDEs through LSP

LF syntax for modal models

Establish regular release cycle/nightly builds
Improve documentation

Website (Coming soon!)

40

Conclusion

*¢ Reactors/Lingua Franca can augment mainstream
programming languages with:
> deterministic concurrency based on
synchronous-reactive principles

> arich model of time

> scheduler that can handle periodic tasks as
well as sporadic events

> deadlines

> high-performance, automatic parallelism

> federated execution (in progress)

> deterministic runtime mutations (future work)

41

Acknowledgements

The core Lingua Franca software development team currently consists of:
Soroush Bateni, Edward A. Lee, Shaokai Lin, Marten Lohstroh, Christian
Menard, Alexander Schulz-Rosengarten, and Efsane Soyer.

Others who have influenced LF with their ideas (in alphabetical order) are:
Abanob Bostouros, Janette Cardoso, Jeronimo Castrillon, Julien Deantoni,
Patricia Derler, Clement Fournier, Christopher Gill, Andrés Goens, Reinhard
von Hanxleden, Hannes Klein, Zheng Liang, ifigo incer Romeo, Marcus
Rossel, Alberto Sangiovanni-Vincentelli, Martin Schoeberl, Sanjit Seshia,
Marjan Sirjani, Edward Wang, Felix Wittwer, and Sheng-Jung Yu.

The work in this paper was supported in part by the National Science
Foundation (NSF), award #CNS-1836601 (Reconciling Safety with the
Internet) and the iCyPhy (Industrial Cyber-Physical Systems) research
center, supported by Denso, Siemens, and Toyota.

42

Check Out LF!

- ¢) GitHub
LTE’ L I N G UA repo.lf-lang.org
F R A N C A Discourse

community.lf-lang.org

43

