
TECoSA Seminar, June 3, 2021

Deterministic Reactive Software for
Embedded, Edge, and Cloud Systems

Marten Lohstroh
Advisor: Prof. Edward A. Lee

Computational vs. Reactive Systems

2

Computational Reactive

Behavior transformational interactive

Termination goal exception

Correctness input/output trace

Composition sequential/interleaving concurrent

Time performance correctness

Manna, Z., & Pnueli, A. (1992). Modeling Real Concurrency. In The Temporal Logic of Reactive and Concurrent Systems (pp. 103-175). Springer, New York, NY.

Background image: Drawings of Harrison's H4 chronometer of 1761, published in The principles of Mr Harrison's time-keeper, 1767.

Cyber-Physical Systems (CPSs)

3

How do we program these things?

How do we Ensure Safety in CPS?

4

The major challenge:
Integrating complex
subsystems with
adequate reliability,
repeatability, and
testability.

enables

Actors

5

Carl Hewitt

Gul Agha

The actor model adopts the philosophy that everything is an actor. This is

similar to the everything is an object philosophy used by some object-oriented

programming languages.

An actor is a computational entity that, in response to a message it receives,

can concurrently:

● send a finite number of messages to other actors;

● create a finite number of new actors;

● designate the behavior to be used for the next message it receives.

There is no assumed sequence to the above actions and they could be carried

out in parallel. (Source: Wikipedia)

Unlike previous models of computation,
the actor model was inspired by physics.

Models of Computation (MoCs)

6

Useful semantics imply
constraints on designers
— Edward A. Lee

Usable design practice
implies: “freedom from
choice” — Alberto
Sangiovanni-Vincentelli

Photo credit: Rusi Mchedlishvili

Deterministic Models are Useful

A model is deterministic if, given the initial state and

the inputs, the model defines exactly one behavior.

Determinism

❖ Enables testing and more tractable analysis

❖ Makes simulation more useful

❖ Allows verification to scale better

7

Concurrency, Distribution are Necessary

8

❖ Performance, scalability, flexibility, complexity

➢ The "Cyber" part of CPS is getting more complex

❖ Dominant parallel and distributed programming

paradigms have relinquished determinism:

"everything is asynchronous"

➢ Actors, publish-subscribe, service-oriented

architectures, distributed shared memory

➢ Even in safety-critical domains: e.g., ROS2,

Autosar Adaptive Platform1, etc.
Menard, Christian, et al. "Achieving determinism in adaptive AUTOSAR." 2020 Design, Automation & Test in
Europe Conference & Exhibition (DATE). IEEE, 2020.

Leverage Principles of DE

9

❖ DE is formally based on
SR, but Ptolemy II
leverages causality
information to avoid
expensive fixpoint
computation

❖ Reactors: be smart about
the grain at which
dependencies are
declared and ensure they
are conservative but not
too conservative

On Language Design: [You] should
“have excellent judgment in choosing
the best features”, but should not
“include untried ideas of [your] own.
[Your] task is consolidation, not
innovation” — C.A.R Hoare

Reactors: (Ptolemy DE) Actors Revisited

10

2

1

3 3

2

1

1

L

1

2 2

1

1

3 3

A

B

C

20 ms

The PL Popularity Contest

11Source: Data is Beautiful (Youtube Channel).
https://www.youtube.com/watch?v=Og847HVwRSI

So
u

rc
e:

 D
at

a
is

 B
ea

u
ti

fu
l (

Yo
u

tu
b

e
C

h
an

n
el

).

ht
tp

s:
//

w
w

w
.y

o
u

tu
b

e.
co

m
/w

at
ch

?v
=O

g8
47

H
V

w
R

SI

Lingua Franca: It's About Time

12

Verbatim target

code

Reactor-oriented

composition

layer

Interactive

Visualization

Compiler Toolchain

13

Logical Time and Physical Time

14
The Persistence of Memory — Salvador Dalí

❖ Steps or 'ticks'

❖ Discrete

❖ Absolute

Simultaneity

❖ Measurements

❖ Continuous

❖ Relativistic

Simultaneity

❖ External events

❖ Deadlines

❖ Federation

❖ Fault handling

Logical Time Physical Time

Logical Actions

15

Logical Actions

16

The after Keyword

17

=

Physical Actions

18

Physical Actions

19

Determinism

A model is deterministic if, given the initial state and

the inputs, the model defines exactly one behavior.

❖ Tags assigned to events scheduled through a

physical action are treated as inputs

❖ LF ensures that the logical time never gets

ahead of physical time; further processing is

exclusively determined by tags

Deadlines

20

WCET?

 T < t+ 500 usec

 T > t+ 500 usec

Deadlines

21

Deadlines

22

Determinism

A model is deterministic if, given the initial state and

the inputs, the model defines exactly one behavior.

❖ Deadlines admit nondeterminism; the

program is only deterministic if no deadlines

are violated

❖ Dependent on factors outside the semantics

of LF; deadline reactions are fault handlers

Scheduling

23

Automatically Exposed Parallelism

24

Physical Connections

25

Accessing Dependencies at Runtime

26

Runtime Overhead

27

Savina - An Actor Benchmark
Suite. Shams Imam, Vivek
Sarkar. 4th International
Workshop on Programming
based on Actors, Agents, and
Decentralized Control (AGERE!
2014), October 2014.

Parallel Execution

28

Scaling on a 6-core Machine (24 hwt)

29

Mutations

30

Federated LF Programs

31

Federation: A Multiplicity of Timelines

32

Bar

Foo Baz

Goal: have each federate observe all tagged
events in tag order.

?

TCP/IP only provides
point-to-point message
ordering guarantees

Centralized Coordination

33

❖ Central coordinator
➢ controls advancement of logical time
➢ relays messages between federates
➢ forms a performance bottleneck
➢ ...and also a single point of failure

Distributed Coordination: PTIDES1

34

T
Foo

T
Baz

T
Bar

t

zx

z x

x y

Zhao, Yang, Jie Liu, and Edward A. Lee. "A programming model for time-synchronized distributed real-time systems."
RTAS '07. IEEE, 2007.

Safe-to-process
threshold assumes
bounds on:
➢ Execution times
➢ Network latency
➢ Clock

synchronization
error

How long
should I
wait?

!

Time: Not Only For Real-Time Systems

35

❖ A semantics of logical time provides a
natural framework for reasoning about
concurrency

❖ Makes some difficult problems easy
❖ Enables quantified evaluation of the tradeoff

between consistency and availability

Example: Cigarette Smokers Problem1

36

1 Due to Suhas Patil (1971)

❖ A cigarette requires three ingredients to
make and smoke: tobacco, paper, and
matches.

❖ Each smoker has an infinite supply of one
ingredient

❖ An agent arbitrarily puts two ingredients on
the table, waits until one smoker has smoked

❖ Each smoker has to acquire two locks before
being able to smoke; How to avoid deadlock?

Cigarette Smokers in Lingua Franca

37

❖ Smokers
execute
concurrently

❖ Logical notion
of
simultaneity
drastically
simplifies the
required
coordination
logic!

Example: Replicated Database1

38

Strong consistency. When federated, this comes at the cost of availability (i.e., a
physical time delay) bounded from below by the network latency between the two
platforms!

1 Inspired by Lamport (1984)

Future Ongoing/Work

39

❖ Expand on quantified CAP Theorem
❖ More thorough performance evaluation
❖ Improve runtime performance
❖ More robust distributed execution
❖ Integration with ROS/AUTOWARE
❖ Security
❖ Implement runtime support for mutations
❖ Target bare-metal FlexPRET
❖ Preemptive EDF
❖ WCET tools in the compiler?

Future Ongoing/Work (Continued)

40

❖ Rust target
❖ Integration with AUTOSAR
❖ Support for other IDEs through LSP
❖ LF syntax for modal models
❖ Establish regular release cycle/nightly builds
❖ Improve documentation
❖ Website (Coming soon!)
❖ ...

Conclusion

41

❖ Reactors/Lingua Franca can augment mainstream
programming languages with:
➢ deterministic concurrency based on

synchronous-reactive principles
➢ a rich model of time
➢ scheduler that can handle periodic tasks as

well as sporadic events
➢ deadlines
➢ high-performance, automatic parallelism
➢ federated execution (in progress)
➢ deterministic runtime mutations (future work)

Acknowledgements

42

The core Lingua Franca software development team currently consists of:
Soroush Bateni, Edward A. Lee, Shaokai Lin, Marten Lohstroh, Christian
Menard, Alexander Schulz-Rosengarten, and Efsane Soyer.

Others who have influenced LF with their ideas (in alphabetical order) are:
Abanob Bostouros, Janette Cardoso, Jeronimo Castrillon, Julien Deantoni,
Patricia Derler, Clement Fournier, Christopher Gill, Andrés Goens, Reinhard
von Hanxleden, Hannes Klein, Zheng Liang, Íñigo Íncer Romeo, Marcus
Rossel, Alberto Sangiovanni-Vincentelli, Martin Schoeberl, Sanjit Seshia,
Marjan Sirjani, Edward Wang, Felix Wittwer, and Sheng-Jung Yu.

The work in this paper was supported in part by the National Science
Foundation (NSF), award #CNS-1836601 (Reconciling Safety with the
Internet) and the iCyPhy (Industrial Cyber-Physical Systems) research
center, supported by Denso, Siemens, and Toyota.

Check Out LF!

43

repo.lf-lang.org

community.lf-lang.org

