
Anomaly Detection and Causal
Reasoning about Attacks

for SCADA Networks

Klara Nahrstedt
klara@illinois.edu

Joint Work with Wenuy Ren, Tuo Yu, Atul Bohara, Ghada Elbez, Al Valdes, Tim Yardley,
William Sanders

mailto:klara@illinois.edu

Outline

Introduction Problem Description

EDMAND and CAPTAR
Approaches Evaluation

• Smart Grid: intelligent electric power

• Supervisory Control and Data Acquisition (SCADA)
SCADA systems are industrial control systems (ICSs) used for real-time monitoring, data
collection, and control for large-scale distributed critical infrastructure systems.

Introduction
Background

3

Generation Transmission Distribution Customer

Physical

Cyber

Presenter
Presentation Notes
Recent development in communications, sensing and measurement techniques has completely changed the traditional electric power grid. Technologies related to the Internet of Things in the fourth industrial revolution have brought us the intelligent electric power grid known as Smart Grid. As a cyber-physical system, Smart Grid consist of both physical and cyber parts. The cyber part has several systems that are widely deployed, including the Supervisory Control And Data Acquisition system (SCADA) and the Wide Area Monitoring System (WAMS). As I already mentioned in my prelim exam, this thesis focus on these two systems.

Introduction
Background

• Smart Grid
• Cyber-Manufacturing
• Other Mission-critical CPS

4

Communication
Network

a1

a2
a3

Actuators

s4

s1

s2

s3

Sensors

Physical Components

c1 c2

Control Centers

Presenter
Presentation Notes
As a critical cyber-physical system, Smart Grid is an integration of physical components, sensors, actuators, control centers, and communication networks. The states of the physical components are measured and monitored by the sensors and the required operations of physical components are carried out by actuators. Via the communication networks, the control centers receive measurements from sensors and send commands to actuators, ensuring the grid operate in desired states.

• The key to monitor and control Smart Grid and other Mission-critical
Cyber-Physical Systems (CPS) is to provide situational awareness of
the system.

• “the goals of situational awareness are to understand and ultimately optimize
the management of power-network components, behavior, and performance,
as well as to anticipate, prevent, or respond to problems before disruptions
arise” [1]

• Providing situational awareness of Smart Grid is challenging.
• There are different challenges in providing situational awareness in SCADA

networks.

Introduction
Challenge and Motivation

5[1] C. Greer, D. A. Wollman, D. E. Prochaska, P. A. Boynton, J. A. Mazer, C. T. Nguyen, G. J. FitzPatrick, T. L. Nelson, G. H. Koepke, A. R. Hefner
Jr et al., “Nist framework and roadmap for smart grid interoperability standards, release 3.0,” Tech. Rep., 2014.

Presenter
Presentation Notes
It is hard to orchestrate large scale Smart Grid which is a heterogeneous, widely dispersed, yet globally interconnected system. The key to monitor and control Smart Grid is to provide situational awareness of the system. NIST states that “the goals of situational awareness are to understand and ultimately optimize the management of power-network components, behavior, and performance, as well as to anticipate, prevent, or respond to problems before disruptions arise”. Situational awareness is based on large-scale, real-time, accurate collection and analysis of the monitoring and measurement data of the system.
Providing situational awareness of Smart Grid is challenging. There are different challenges in providing situational awareness in SCADA and WAMS and both systems deserve our attention.

• SCADA architecture

• The main challenge to guarantee situational awareness in SCADA is the lack
of security protection.

• Connecting a growing number of heterogeneous programmable devices together
introduces new security risks.

• Many devices and protocols in SCADA are not designed with security in mind and
lack the vital security protection capabilities.

Introduction
Challenge and Motivation

6

Presenter
Presentation Notes
***A SCADA system is a common industrial control system which is used to collect data from sensors located at remote sites and to issue commands from a central site for control purpose. The major components in SCADA system include the Master Terminal Units in the control centers, field controllers in the remote substations and the communication network that connects them. The field controllers mainly consist of Remote Terminal Units and Programmable Logic Controllers and are further connected to sensors and actuators.
The main challenge to guarantee situational awareness in SCADA is the lack of security protection. Smart Grid provides the traditional electric power grids with new functionalities and transforms the closed legacy control networks to open IP-based networks. However, connecting a growing number of heterogeneous programmable devices together introduces new security risks and increases the attack surface of the system. To make things worse, many devices and protocols in SCADA are not designed with security in mind and lack the vital security protection capabilities. The situational awareness of the system will suffer if security breaches occur and are not treated quickly and properly.

Introduction
Challenges and Motivation

• SCADA systems are subject to a wide range of serious threats due to
the following vulnerabilities:
1. The adoption of cutting-edge communication technologies contributes to the

increasing complexity and interconnection of SCADA systems.
2. Devices in SCADA systems are usually not built with cybersecurity in

consideration and lack authentication or encryption mechanisms.
3. Most ICS protocols lack authentication features and provide no protection for

the network traffic.

• Developing techniques to target those vulnerabilities and provide
security to SCADA systems is important.

Presenter
Presentation Notes
Critical as they are, SCADA systems are subject to a wide range of serious threats in recent years for several reasons. First, the adoption of cutting-edge communication technologies contributes to the increasing complexity and interconnection of SCADA systems, which potentially provides greater opportunity for attacks from malicious sources. Since corporate intranets can be connected to the internet, SCADA systems connections with corporate intranets may expose their communication weakness to threats of broader aspects. Second, devices in SCADA systems are usually not built with cybersecurity in consideration and lack authentication or encryption mechanisms. To make things worse, the enabling of remote access to these devices via wireless technologies makes them easy to compromise. Third, most ICS protocols lack authentication features and provide no protection for the network traffic. The vulnerabilities of SCADA systems can be exploited from both outside by malicious attackers and inside by disgruntled employees. Besides deliberate attacks, inadvertent events such as natural disasters, device failures, and operator mistakes may also jeopardize SCADA systems due to those vulnerabilities. Therefore, developing techniques to target those vulnerabilities and provide security to SCADA systems is a pertinent topic of particular importance.

• It is necessary to provide causal security analysis of the system which
includes anomaly detection AND reasoning of anomalies.

Introduction
Causal Security Analysis

8

Situational Awareness

Know the state
of the system

Understand why the
system is in that state

Understand why
anomalies happen

Know what anomalies are
happening in the system

Anomaly Detection Anomaly Reasoning

Presenter
Presentation Notes
Besides guaranteeing the timeliness of data, the security of Smart Grid is also vital for the situational awareness of Smart Grid. And as I mentioned before, the goal of situational awareness is more than just to know the state of the system but also to understand why the system is in that state. In terms of security, knowing what anomalies are happening in the system is not enough. Understanding why they happen is also of critical importance. If only intrusion detection is deployed and the causes and consequences of the events are not identified, it is hard or impossible for the operator to quickly digest the events and react to them. Therefore, to guarantee situational awareness of Smart Grid, it is necessary to provide causal security analysis of the system which includes not only the detection but also the reasoning of anomalies.

• An edge-cloud design is essential in providing situational awareness
to Smart Grid.

• Faster actuation and response of the Smart Grid system to events
• Better utilization of the communication bandwidth
• Increase of reliability and scalability

Introduction
Edge-cloud Design

9

Presenter
Presentation Notes
To provide situational awareness, another novel paradigm called edge computing also needs be exploited. Edge computing is an architecture that uses edge devices to carry out computing services closer to end devices. For Smart Grid, the control centers host the cloud and the substations include the edges. By using an edge-cloud design in Smart Grid, inspection and preliminary analysis of SCADA traffic can be placed close to end devices to provide timely information to power grid operators. The huge data volume in WAMS can also be reduced if data compression operation is placed at the edge. Therefore, an edge-cloud design is essential in providing situational awareness to Smart Grid by helping to achieve a faster actuation and response of the Smart Grid system to events, a better utilization of the communication bandwidth, and an increase of reliability and scalability.

EDMAND – Edge-Based Multi-
Level Anomaly Detection for
SCADA

Problem Description
• Objective

Design a framework to provide real-time security in SCADA.

• We focus on network-based analysis due to its less intrusive nature.
• We divide data in SCADA network traffic into three levels

- Transport level: Transport level data refers to statistics in IP headers and transport
protocol headers.

- Operation level: Operation level data refers to operation statistics in ICS protocols.
- Content level: Content level data refers to measurement statistics from field

devices.

Presenter
Presentation Notes
The objective of this work is to design a framework to provide real-time security in SCADA. In general, two types of analysis are available to provide security for SCADA systems: host-based and network-based. We focus on network-based analysis which monitors and inspects network traffic due to its less intrusive nature. Based on different analysis granularity, data in SCADA network traffic generally can be divided into three levels: transport level, operation level, and content level. Transport level data refers to statistics in IP headers and transport protocol headers. Operation level data refers to operation statistics in ICS protocols. Content level data refers to measurement statistics from field devices.

EDMAND Approach

• EDge-based Multi-level ANomaly Detection framework for SCADA
networks named EDMAND.

- EDMAND is located inside the remote substations, which are the edges of the
SCADA network.

- EDMAND contains a multi-level anomaly detector to monitor all three levels
of network traffic data passing by.

- Appropriate anomaly detection methods are applied based on the distinct
characteristics of data in various levels.

- Generated alerts are aggregated, prioritized, and sent back to control centers
when anomalies are detected.

Presenter
Presentation Notes
In this work, we develop an edge-based multi-level anomaly detection framework for SCADA networks, named EDMAND. EDMAND is located inside the remote substations, which are the edges of the SCADA network. It contains a multi-level anomaly detector to monitor all three levels of network traffic data passing by. Appropriate anomaly detection methods are applied based on the distinct characteristics of data in various levels and alerts are generated, aggregated, prioritized, and sent back to control centers when anomalies are detected.

Placement of EDMAND

• Network Architecture
- Major components in SCADA network: MTUs, remote devices, and the

communication network.

- EDMAND is deployed in each substation between the remote devices and the wide
area network.

M
as

te
r T

er
m

in
al

U
ni

t

Presenter
Presentation Notes
A simplified architecture of SCADA network is shown in the figure. The major components in SCADA network include the Master Terminal Units in the control centers, remote devices in the substations and the communication network that connects them. The remote devices can be Remote Terminal Units, Programmable Logic Controllers, or Intelligent Electronic Devices, which further connect to and receive measurements from field devices such as sensors or actuators. The MTU in the control center queries the remote devices for system updates and may also issue control commands to them to change the control strategy. To avoid further data collection time and achieve prompt anomaly detection, we deploy EDMAND at the edge of the SCADA network. To be more specific, EDMAND is deployed in each substation between the remote devices and the wide area network. EDMAND monitors all traffic passing by and sends alerts back to control centers when anomalies are detected.

!!! Klara Comments: In the figure, please, correct “Mater Terminal Unit’ to Master Terminal Unit’.

EDMAND Design

• Design decision
- Divide traffic data into multiple levels and apply appropriate anomaly

detection mechanisms to data in each level based on their characteristics.
- Introduce the concept of confidence into the anomaly detection process and

assign confidence scores to generated alerts.

• Confidence Score
Confidence that the corresponding alert is an anomaly.

𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪 𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺(𝑪𝑪𝑪𝑪) = 𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴 𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨(𝑴𝑴𝑴𝑴) × 𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺(𝑨𝑨𝑨𝑨)

∈ 0, 1 How accurate is our
model in describing
normal behavior

How far does the
current value deviate
from the normal value

Presenter
Presentation Notes
We made two important decisions while designing our framework. The first one is to divide traffic data into multiple levels and apply appropriate anomaly detection mechanisms to data in each level based on their characteristics. As we mentioned previously, data in SCADA traffic can be divided into three levels: transport level, operation level, and content level. Data in each level have their own characteristics, which is taken into consideration when we select anomaly detection mechanisms for each level.
The second design decision is to introduce the concept of confidence into the anomaly detection process and assign confidence scores to generated alerts. We define an alert’s confidence score to be the confidence that the alert is indeed an anomaly. We calculate the confidence score by the product of the model accuracy and the anomaly score. The model accuracy measures the accuracy of our anomaly detection model in describing normal behavior and serves as the weight of the anomaly score. The anomaly score measures how far the current sample deviates from the normal behavior described by the model.

Framework Design

• Main components of EDMAND
- Data Extractor : monitors the network traffic passing by and forwards all three

levels of network traffic data to the anomaly detector.
- Anomaly Detector: contains three levels and each level uses appropriate

method to detect anomalies and generates alerts.
- Alert Manager : aggregates similar alerts into meta-alerts, calculates priorities

of meta-alerts, and reports meta-alerts to the control center.

Zeek

Presenter
Presentation Notes
As it is shown in the figure, EDMAND consists of 3 main components: the Data Extractor, the Anomaly Detector, and the Alert Manager. The data extractor is implemented utilizing a network security monitor called Bro. The data extractor monitors the network traffic passing by and forwards all three levels of network traffic data to the anomaly detector. The anomaly detector contains three levels and each level uses appropriate method to detect anomalies and generates alerts. After that, the alert manager aggregates similar alerts into meta-alerts. Priorities are given to meta-alerts and the alert manager reports meta-alerts to the control center with various frequencies according to their priorities. We will now describe the anomaly detector and the alert manager in more detail.

Anomaly Detector

• Multi-level anomaly detector

Zeek

Presenter
Presentation Notes
The structure of the multi-level anomaly detector is shown in the figure. There is a listener which receives Bro data from the data extractor and feeds them to the three modules for three levels. In each module, there is a parser that parses the Bro data corresponding to that level and translates them to standard input data for the processor. The processors implement various anomaly detection mechanisms to detect anomalies and generate alerts. We will introduce the three modules for three levels of data respectively.

Anomaly Detector:
Transport Level
• Two kinds of analysis at different time scales

- Packet processor: runs every packet for short-term analysis.

- Flow processor: runs every period Tflow for long-term analysis.

Interarrival time (IAT)
Packet size (PS) Multimodal distribution Clustering

Packet count (PC)
Average Packet Size (APS) Unimodal distribution 𝜇𝜇,𝜎𝜎

Presenter
Presentation Notes
In the transport-level module, two kinds of analysis at different time scales are applied. A packet processor analyzes each packet for short-term analysis. A flow aggregator aggregates packet statistics every period Tflow and forwards to a flow processor for long-term analysis.
The input data to both processors consists of two kinds of fields: the index field which describes the packet or flow related with the input data, and data fields which store statistics for anomaly detection. As it is listed in the table, the index fields for both processors share the same structure, which is a 4-tuple including originator(IP), responder(IP), transport protocol, and port number. The packet processor has interarrival time IAT and packet size PS as its data fields and the flow processor has packet count PC and average packet size APS as its data fields.
We mentioned previously that one of the design decisions we made is to apply appropriate method to data with different characteristics. Since packet statistics and flow statistics follow quite different distributions, different anomaly detection mechanisms are utilized for the packet processor and flow processor. On the one hand, since traffic in SCADA usually follows periodic patterns, the packet count PC and average packet size APS in a certain period usually follows a unimodal distribution as long as the period is selected properly. Therefore, the mean and standard deviation are good enough to characterize these data fields. On the other hand, the interarrival time IAT and the packet size PS of each packet usually follow multimodal distributions. For this reason, the mean and standard deviation may not be able to characterize these data fields and we utilize a modified 1D version of a clustering method called DenStream.

Anomaly Detector:
Operation Level
• Operation processor

- Objective: detect anomalies in operations of industrial control protocols
(Modbus, DNP3)

- Index fields: originator, responder, ICS protocol, unit id, function code

- Data field: interarrival time (IAT)

CS – Confidence Score
AS – Anomaly Score

Presenter
Presentation Notes
The objective of the operation-level module of the anomaly detector is to detect anomalies in operations (e.g., requests and responses) of ICS protocols such as Modbus and DNP3. Similarly, the input data of the operation processor have an index field and a data field. We use a 5-tuple of (originator(IP), responder(IP), ICS protocol, unit id, function code) as the index field and interarrival time IAT as the data field. Here unit id is a ICS protocol specific address which is used to differential devices that share the same IP address.
As it is shown in the table, there are mainly three types of anomalies in this level. The first type includes invalid function code and wrong direction of operation. For an anomaly of the first type, an alert is generated directly and a confidence scores of 1 is assigned. The second type of anomaly is the emerging of new operation. In this case, an anomaly score of 1 is given. The third type of anomalies includes scenarios of periodic operation arriving too early, arriving too late, or disappearing. In SCADA, the IAT of the same operation follows a unimodal distribution since operations are usually periodic. Therefore, the mean and standard deviations are used for anomaly detection.

Anomaly Detector:
Content Level
• Content processor

- Objective: detect anomalies in measurement values which are included in responses to read
requests

- Index fields: measurement source, ICS protocol, unit id, measurement type, measurement
index

- Data field: measurement value
- Method: different methods for different measurement types

• DNP3 measurement type
- Binary
- Analog
- Counter

most common

Presenter
Presentation Notes
The content-level module of the anomaly detector is responsible for detecting anomalies in measurement values such as frequencies and voltages which are included in responses to read requests. The input data of the content processor have a 5-tuple of (measurement source (IP), ICS protocol, unit id, measurement type, measurement index) as the index field and the measurement value itself as the data field. Depending on the measurement type, different methods are applied for anomaly detection. Let us take DNP3 for example, where the three measurement types are Binary, Analog, and Counter. Here we will discuss the first two which are most commonly seen.

Anomaly Detector:
Content Level
• Binary

- Intuition: binary measurement usually has a normal value and an abnormal
value

- Method: count 0s and 1s and try to identify the normal value

- Anomaly Score (AS): 1 – Entropy(observed samples)

𝐴𝐴𝐴𝐴 𝛾𝛾 = �
1 𝛾𝛾 = 0 𝑜𝑜𝑜𝑜 1

1 + 𝛾𝛾 log2 𝛾𝛾 + 1 − 𝛾𝛾 log2 1 − 𝛾𝛾 0 < 𝛾𝛾 < 1

𝛾𝛾 =
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 0𝑠𝑠 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜
where

Presenter
Presentation Notes
For the Binary measurement type, the intuition behind the detection method is that a binary variable can only take two values (i.e., 0 or 1) and always one of them is normal and the other is abnormal. Therefore, we can try to identify the normal value by simply counting the 0s and 1s in observed samples. The normal value is 0 if the majority of the observed values are 0s and vice versa. Whenever the abnormal value appears, we calculate the anomaly score by one minus the entropy of observed samples as shown in the equation.

Anomaly Detector:
Content Level

• Analog
- Most common analog measurements include frequency, voltage, current,

power
- They have quite different characteristics

• 2-step anomaly detection
1. Categorizes analog measurements into different analog classes
2. Uses appropriate method for each class

Presenter
Presentation Notes
For the analog measurement type, we take the Smart Grid as an example. Frequency, voltage, current, and power are four most common classes of analog measurements and they usually have quite different characteristics. For example, ‘frequency’ is always around 60Hz and has a very small relative standard deviation whereas ‘current’ varies a lot but follows a diurnal pattern. Based on different analog classes’ characteristics, we develop a 2-step anomaly detection method to analog measurements. In step 1, we further categorize analog measurements into different analog classes and use an appropriate method for each class to detect anomalies in step 2.

Anomaly Detector:
Content Level
• Step 1: Bayesian analog type inference model

- We denote 𝑦𝑦𝑘𝑘 as the observation at 𝑘𝑘𝑡𝑡𝑡 leaf node and 𝑥𝑥𝑖𝑖 as the 𝑖𝑖𝑡𝑡𝑡 analog
type at the root node

- Let P(xi) be the prior probability for the hypotheses of the root
𝑃𝑃 𝑥𝑥𝑖𝑖 𝑦𝑦1,𝑦𝑦2,𝑦𝑦3 = 𝛼𝛼𝑃𝑃 𝑥𝑥𝑖𝑖 �

𝑘𝑘=1

3
𝑃𝑃 𝑦𝑦𝑘𝑘 𝑥𝑥𝑖𝑖

𝛼𝛼 =
1

𝑃𝑃 𝑦𝑦1,𝑦𝑦2, 𝑦𝑦3
�

𝑖𝑖
𝑃𝑃 𝑥𝑥𝑖𝑖 𝑦𝑦1,𝑦𝑦2, 𝑦𝑦3 = 1where and can be calculated using

Presenter
Presentation Notes
More specifically, in step 1 of our analog measurement anomaly detection, we utilize a Bayesian inference method and build an analog class inference model based on the Bayesian network. Here we use a very simple Bayesian network with one root node and three leaf nodes shown in the figure. Each leaf node has a conditional probability table (CPT) representing the prior knowledge of the dependence between the child node and its parent node. The root represents the analog class with four hypothesis states and the leaf nodes represent directly observable evidences and each leaf node has several discrete states. The objective of this model is to calculate the belief in hypotheses of the root, which is decided by the likelihood propagated from its child nodes and ultimately the observed evidences at the leaf nodes.
We denote yk as the observation at kth leaf node and xi as the ith analog class at the root node. Let P(xi) be the prior probability for the hypotheses of the root. The believe in the analog class xi is represented by the conditional probability of xi given the observation at all leaf nodes and can be calculated by the shown equation.

Anomaly Detector:
Content Level
• Step 2: Apply different anomaly detection method for each analog

class

Presenter
Presentation Notes
After the analog classes are inferred, different anomaly detection methods are applied as shown in the table. Mean and standard deviation are used for frequency and voltage. For current or power, we divide 24 hours to multiple time slots and calculate mean and standard deviation in each of the slot throughout multiple days. For analog measurements not belonging to any of the mentioned classes, the 1D-DenStream method for the flow processor is utilized. Notice that this list of analog classes can be extended by incorporating prior knowledge of other analog classes into the inference model and taking their characteristics into consideration while selecting their anomaly detection methods.

Alert Manager
• Alert field

- Index fields (same as index fields of the corresponding
processor)

- Alert type
- Timestamp
- Confidence score
- Statistical fields (current value, mean, standard deviation, etc.)
- Abnormal data (original parsed data of the corresponding

level)

• Alert manager structure

Presenter
Presentation Notes
The alerts generated by EDMAND’s multi-level anomaly detector which have confidence score higher than a threshold are forwarded into the alert manager. Alerts generated by different processors share the following common fields: index field, alert type, timestamp, confidence score, statistical fields and abnormal data. Index field is the same as the index field in the input data of the corresponding processor. Alert type is the description of the anomaly. Statistical fields include statistics in the data field such as current data value, mean, standard deviation, etc. Abnormal data is the original input data of the processor which triggering the alert. As it is shown in the figure, the alert manager consists of two components: The Alert Aggregator and the Alert Scheduler.

Alert Aggregator

• Objective
Aggregate alerts that have same type as well as index fields and
have little difference in timestamp

Presenter
Presentation Notes
The objective of the alert aggregator is to aggregate alerts that share the same alert type as well as the index field and have little difference in timestamps. The aggregated alert is called the meta-alert. The meta-alert inherits all the fields from the alerts before aggregation with each field type having its own aggregation rule listed in the table. Another count field is added to store the number of alerts aggregated to this meta-alert. Whenever the alert aggregator receives a new alert, it tries to aggregate it to existing meta-alerts. If there is no meta-alert that this alert can merge to, a new meta-alert is created. In this way, consecutive duplicate alerts about the same event are aggregated to one meta-alert, which prevents alert flooding and simplifies further analysis of the alerts.

Alert Scheduler
• Objective

Calculate priority score for each meta-alert and decide
when to report it to the control center

• Priority score
- We denote 𝑦𝑦𝑘𝑘 as the observation at 𝑘𝑘𝑡𝑡𝑡 leaf node
- Define 𝑃𝑃𝑃𝑃 = 𝑃𝑃 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = ℎ𝑖𝑖𝑖𝑖𝑖 𝑦𝑦1,𝑦𝑦2,𝑦𝑦3,𝑦𝑦4,𝑦𝑦5

Similar Bayesian calculation of
PS as in Analog Content Level
Anomaly Detection

Presenter
Presentation Notes
Every time a meta-alert is created or updated, it is forwarded to the alert scheduler, where its priority score is calculated and its report frequency is decided. The alert priority computation model in the figure is similar to the analog class inference model. It is a Bayesian network with one root node and five leaf nodes. The root represents the alert priority which has two hypothesis states of low and high. Similarly, the leaf nodes represent observable evidence, and each has several discrete states. We denote yk as the observation at kth leaf node. We define the priority score to the conditional probability of priority equals to high given the observation at all leaf nodes, which can be calculated in a similar way as the analog class inference model.

Alert Scheduler

• Meta-alert report frequency

Presenter
Presentation Notes
Different report mechanisms in the table are applied to meta-alerts based on their priority scores PS. After the priority score is calculated, the meta-alert is classified as high-priority or low-priority. High-priority meta-alerts are always reported immediately when first created and reported with a small period if they are updated during that period. Low-priority meta-alerts are not reported immediately upon creation and reported with a large period if they are updated during the period. In our ongoing project, we are working on designing a causality-based anomaly analyzer in the control center to further correlate and analyze the received alerts.

Evaluation

• Baseline traffic

Control Center

Remote DeviceRemote Device

Control Center Remote Device

binary

frequency

voltage

current

power

binary

frequency

voltage

current

power

Presenter
Presentation Notes
We evaluate the performance of EDMAND in two aspects: detection ability and time overhead. The evaluation is based on a simulated DNP3 traffic set which includes periodic baseline traffic and injected anomalies in transport, operation, and content levels. The baseline traffic consists of 10 days of simulated traffic of one control center sending read requests to two remote devices every 20 seconds. Each read request is followed by a TCP acknowledgement as well as a response from the remote device. After the response which contains the requested measurements is received by the control center, the control center sends a confirmation which is again followed by an acknowledgement from the remote device. Each remote device contains 5 measurements: one binary measurement and four analog measurements including frequency, voltage, current and power. Those measurements are simulated data from our testbed.

ED
M

AN
D Problem

Description
Our

Approach

Framework
Design Evaluation

• Detection ability
• The analog class inference model correctly identifies all analog classes.

• EDMAND can detect all the anomalies injected.

• 12135 alerts are aggregated to 22 meta-alerts.

29

Evaluation

Presenter
Presentation Notes
The analog class inference model correctly identifies all analog classes in the baseline traffic. We inject various anomalies in the three levels listed in the table to evaluate EDMAND’s anomaly detection ability. For example, in the transport level, we add a new node to send several packets to one field controller. In the operation level, we delay one response from a field controller intentionally. In the content level, we introduce over voltage and under voltage tripping to voltage measurements. EDMAND can detect all the anomalies injected with no false alarms. All the anomalies generate over 12 thousands alerts in total, which are aggregated to 22 meta-alerts. We also evaluate some related works’ detection abilities based on their description. None of them can detect all our injected anomalies like EDMAND does.

ED
M

AN
D Problem

Description
Our

Approach

Framework
Design Evaluation

• Detection ability

30

Evaluation

Multi-step Attack

The attacker scans several ports in a specific IP range
to find the target field controller and the industrial
control protocol the SCADA system is using.

The attacker sends a write request to the field
device to compromise the device

The compromised device sends tampered data in
responses to read requests from the control center.

Transport Level

Operation Level

Content Level

Presenter
Presentation Notes
We also create a multi-step attack scenario with simulated traffic. In step 1, the attacker scans several ports in a specific IP range to find the target field controller and the industrial control protocol the SCADA system is using. In step 2, the attacker sends a write request to the field device to compromise the device. In step 3, the compromised device sends tampered data in responses to read requests from the control center. EDMAND can detect all three steps of the attack and the three steps are detected in transport level, operation level, and content levels respectively. A framework only concentrating on one or two levels of data may not be able to see the whole picture of the attack.

Evaluation

• Time overhead
- Ubuntu 16.04 desktop with 12 Intel Xeon 3.60GHz CPUs and 16GB memory

- Total analysis time (data extraction + anomaly detection) per packet:
- Transport level: 3.87ms

- Operation level: 6.66ms

- Content level: 1.94ms

- The average time overhead of the anomaly manager for each alert is 423ms.

Presenter
Presentation Notes
To demonstrate EDMANDs ability to satisfy the real-time requirements of anomaly detection in SCADA systems, we also evaluate the time overhead of data analysis in the three levels and the alert manager. We run our experiments on an Ubuntu 16.04 desktop with 12 Intel Xeon 3.60GHz CPUs and 16GB memory. The data extraction in Bro and the anomaly detection for the three levels run in parallel. The total analysis time (data extraction time + anomaly detection time) per packet of the three levels are 3.87ms for transport level, 6.66ms for operation level, and 1.94ms for content level. Since the common data collection interval in SCADA systems is seconds or even minutes, several milliseconds of time overheads per packet are short enough for the packets to be processed in communication line speed. The average time overhead of the anomaly manager for each alert is 423ms. Since the rate of alerts is far smaller than the rate of packets, the overhead of 423ms for each alert is still practical.

CAPTAR – Causal Reasoning
about Anomalies in SCADA

• Problem
• Traditional intrusion detection systems for SCADA networks continuously generate tremendous

number of alerts without further comprehending them.

• SCADA operators are almost blind to see any useful information in the ocean of unstructured
alerts mixed with false positives.

• Objective
Design an efficient system for SCADA to correlate alerts from intrusion detection systems in an
intelligent manner and discover attack strategies based on domain knowledge as well as causal
reasoning.

33

Problem Description

Presenter
Presentation Notes
This work targets the problem that traditional intrusion detection systems for SCADA networks continuously generate tremendous number of alerts without further comprehending them. Drowned in an ocean of unstructured alerts mixed with false positives, SCADA operators are almost blind to see any useful information. Due to the high volume and low quality of the alerts, it becomes a nearly impossible task for the operators to figure out the complete pictures of the attacks and take appropriate actions in a timely manner.
To address the aforementioned problem and provide the SCADA operators with explainable situational awareness, there is a need for an efficient system to correlate alerts from intrusion detection systems in an intelligent manner and discover attack strategies based on domain knowledge as well as causal reasoning.

• CAPTAR: CAusal-PolyTree-based Anomaly Reasoning framework for SCADA networks.
• CAPTAR resides in the control center of the SCADA network and takes the meta-alerts from

EDMAND as input.

• CAPTAR correlates the alerts using a naive Bayes classifier and matches them to predefined causal
polytrees which represent attacks.

• Utilizing Bayesian inference on the causal polytrees, CAPTAR is able to reveal the attack scenarios
from the alerts and produces a high-level view of the security state of the protected SCADA
network.

34

CAPTAR Approach

Presenter
Presentation Notes
In this work, we present a causal-polytree-based anomaly reasoning framework for SCADA, named CAPTAR. CAPTAR resides in the control center and takes the meta-alerts from EDMAND as input. CAPTAR correlates the alerts using a naive Bayes classifier and matches them to predefined causal polytrees which represent attacks. Utilizing Bayesian inference on the causal polytrees, CAPTAR is able to reveal the attack scenarios from the alerts and produces a high-level view of the security state of the protected SCADA network.

• Components of CAPTAR
• Meta-alert Database: stores the meta-alerts from EDMAND.
• Attack Template Database: stores potential attack templates which are causal polytrees created

by domain experts.
• Alert Correlator: decides if two meta-alerts are correlated or not
• Causal Reasoning Engine: matches meta-alerts to attack templates and performs belief

propagation.

35

Framework Design

Presenter
Presentation Notes
***After we introduce the belief propagation algorithm and the “noisy-OR” and “noisy-AND” models, we can now talk about CAPTAR. CAPTAR consists of 4 components. The meta-alert database is used to store the meta-alerts from EDMAND. These meta-alerts serve as evidence to our causal reasoning of anomalies. The attack template database stores the potential attack templates which are causal polytrees created by domain experts. The alert correlator takes two meta-alerts as inputs and outputs a correlation score which is used to decide whether the two input meta-alerts are correlated or not. The core component of CAPTAR is the causal reasoning engine which interacts with all other three components. It fetches attack templates from the database and conduct alert matching as well as belief propagation on them. The meta-alerts are retrieved from the meta-alert database and the alert matching is done using the alert correlator. Whenever the belief of an attack is high enough, the engine outputs the causal polytree corresponding to that attack for further analysis by the operator.
In the following slides, we will introduce the meta-alert database, the attack template database, the alert correlator, and the causal reasoning engine in more detail.

• Meta-alert fields
• Alert ID: a unique id for retrieving the meta-alert from the

database

• Alert Type: a name that describes the meta-alert

• Index Field : a set of additional information that helps to
describe the meta-alert

• Timestamp : (start time, end time)

• Confidence Score : the confidence that the meta-alert is
triggered by an anomaly

36

Meta-alert Database

Presenter
Presentation Notes
The meta-alert database is a database to store meta-alert generated by EDMAND. The fields of meta-alerts that will be used in CAPTAR are alert id, alert type, index field, timestamp, and confidence score. Alert id is a unique string that serves as the key to retrieve the meta-alert from the database. Alert type is a name that briefly describes the meta-alert. The current prototype of EDMAND generates 24 types of alerts and a complete list is shown in the table. For simplicity reason, we use numbers to represent alert types. Index field of the meta-alert contains additional information that helps to describe the meta-alert, such as IP addresses, protocol, service, etc. This field is later used by the alert correlator to correlate meta-alerts. Timestamp field simply contains a pair of timestamps (start time, end time). Confidence score field represents the confidence that the meta-alert is triggered by an anomaly.

• Nodes in attack template (𝐴𝐴𝐴𝐴)
• Each node in an attack template is an attack step.

• Each parent represents a prior cause attack step.

• Each child represents a posterior consequence attack step.

• Sink nodes 𝑺𝑺𝐴𝐴𝐴𝐴 represent the final targets of the entire attack and we call them
consequence nodes.

37

Attack Template Database

– The maximum probability of
existence of all consequence
nodes in 𝐴𝐴𝐴𝐴, 𝐵𝐵𝐵𝐵𝐵𝐵𝑚𝑚𝑚𝑚𝑚𝑚 (𝐴𝐴𝐴𝐴),
represents the inferred
success rate of the attack.

𝐵𝐵𝐵𝐵𝐵𝐵𝑚𝑚𝑚𝑚𝑚𝑚 𝐴𝐴𝐴𝐴 = max
𝑋𝑋∈𝑺𝑺𝐴𝐴𝐴𝐴

𝐵𝐵𝐵𝐵𝐵𝐵𝑥𝑥 1

consequence node

Attack Template AT (Causal Polytree Example)

ALERT TYPES
0 - PACKET_IAT
14 - OP TOO_LATE
21 - BINARY_FAULT
22 - ANALOG_TOO_LARGE
23 - ANALOG_TOO_SMALL

Presenter
Presentation Notes
***In CAPTAR, we utilize causal polytrees to reason about anomalies in SCADA. We call these special causal polytrees attack templates and store them in the attack template database. When an attack is launched, the triggered meta-alerts from EDMAND are matched to the corresponding attack template and the belief propagation is conducted on it. An example attack template for the data integrity attack is shown in the figure. Each node 𝑋 in an attack template 𝐴𝑇 is an attack step. Each parent represents a prior cause attack step that can lead to the current one and each child represents a posterior consequence attack step that the current one can lead to. If there are multiple parents, they follow either the “noisy-OR” or the “noisy-AND” model. Also, each attack template 𝐴𝑇 contains one or more sink nodes represented by shaded nodes. Denote the set of sink nodes as 𝑺 𝐴𝑇 . Nodes in 𝑺 𝐴𝑇 represent the final targets of the entire attack and we call them consequence nodes. We use 𝐵𝐸𝐿 𝑚𝑎𝑥 (𝐴𝑇) to denote the maximum probability of existence of all consequence nodes in 𝐴𝑇. The value of 𝐵𝐸𝐿 𝑚𝑎𝑥 (𝐴𝑇) represents the inferred success rate of the attack.

• Alert unit table
• Alert Unit 𝐴𝐴𝐴𝐴𝑖𝑖 = 𝑤𝑤𝑖𝑖 ,𝐴𝐴𝑖𝑖𝑖,𝐴𝐴𝑖𝑖𝑖, … ,𝐴𝐴𝑖𝑖𝑛𝑛𝑖𝑖
• ∑𝑖𝑖𝑤𝑤𝑖𝑖 = 1
• Alert types in the same alert unit represent similar kinds of anomalies

caused by the attack step

38

Attack Template

ANALOG_TOO_SMALL𝑤𝑤 BINARY_FAULT

ANALOG_TOO_LARGE

𝑋𝑋

ALERT TYPES
0 - PACKET_IAT
14 - OP TOO_LATE
21 - BINARY_FAULT
22 - ANALOG_TOO_LARGE
23 - ANALOG_TOO_SMALL

Presenter
Presentation Notes
***Each attack step has two binary states: exist and not exist. However, the attack steps cannot be observed directly. We can only infer the existence of each attack step by the alerts it triggers in EDMAND. We create a structure, called alert unit table, to store the matched meta-alerts at each attack step. Each row in the table is an alert unit (𝐴𝑈), which represents one proportion of evidence. Each alert unit 𝐴𝑈 𝑖 consists of a weight 𝑤 𝑖 and a list of alert types. The weight represents how much the observation of the following alert types can prove the existence of the attack step. Alert types in the same alert unit represent similar kinds of anomalies caused by the attack step. For example, in node 𝑋 in the figure, the alert unit table contains one alert unit. Since there is just one alert unit, its weight is 1. The three alert types are 21, 22, and 23, which represent BINARY_FAULT, ANALOG_TOO_LARGE, and ANALOG_TOO_SMALL. These three types of meta-alerts all represent the actual tampering of the measurement data and are therefore included in the same alert unit.

• The confidence scores of the matched meta-alerts are used to
calculate the diagnostic support message 𝜆𝜆 �𝑋𝑋 𝑥𝑥 (indirect
evidence).

• Assume there are 𝑚𝑚𝑖𝑖𝑖𝑖 meta-alerts 𝑎𝑎𝑖𝑖𝑖𝑖1, 𝑎𝑎𝑖𝑖𝑖𝑖2, … , 𝑎𝑎𝑖𝑖𝑖𝑖𝑚𝑚𝑖𝑖𝑖𝑖 matched to alert
type 𝐴𝐴𝑖𝑖𝑖𝑖.

• Confidence score of the alert type 𝑨𝑨𝒊𝒊𝒊𝒊 :

𝐶𝐶𝐶𝐶 𝐴𝐴𝑖𝑖𝑖𝑖 = �
∏𝑙𝑙=1
𝑚𝑚𝑖𝑖𝑖𝑖𝐶𝐶𝐶𝐶 𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖

∏𝑙𝑙=1
𝑚𝑚𝑖𝑖𝑖𝑖𝐶𝐶𝐶𝐶 𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖 +∏𝑙𝑙=1

𝑚𝑚𝑖𝑖𝑖𝑖 1−𝐶𝐶𝐶𝐶 𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖
𝑖𝑖𝑖𝑖 𝑚𝑚𝑖𝑖𝑖𝑖 > 0

𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑖𝑖𝑖𝑖 𝑚𝑚𝑖𝑖𝑖𝑖 = 0

39

Attack Template

indirect
evidence

𝐴𝐴𝑖𝑖𝑖𝑖 𝑎𝑎𝑖𝑖𝑖𝑖𝑖, 𝑎𝑎𝑖𝑖𝑖𝑖𝑖, … ,𝑎𝑎𝑖𝑖𝑖𝑖𝑚𝑚𝑖𝑖𝑖𝑖

𝐴𝐴11 𝐴𝐴12 𝐴𝐴13

𝑎𝑎111 𝑎𝑎112

Note: Matching Done by Causal
Reasoning Engine

Presenter
Presentation Notes
As we mentioned previously, if meta-alerts are matched to a node 𝑋 and stored in its alert unit table, an auxiliary child node 𝑋 is added to 𝑋 to represent the indirect evidence. The confidence scores of the matched meta-alerts are used to calculate the diagnostic support message 𝜆 𝑋 𝑥 that 𝑋 provides to 𝑋. For each alert type 𝐴 𝑖𝑗 in the alert unit table, we assume there are 𝑚 𝑖𝑗 meta-alerts matched to it. The confidence score of the alert type 𝐴 𝑖𝑗 is calculated as follows. Here 𝑃 𝑚𝑖𝑠𝑠 is a predefined probability of missing meta-alerts. In our example, let us assume there are two meta-alerts matched to alert type 21 in the alert table. Then 𝑋 represents the indirect evidence provided by these two meta-alerts to node 𝑋.

• The confidence scores of the matched meta-alerts are used to
calculate the diagnostic support message 𝜆𝜆 �𝑋𝑋 𝑥𝑥 .

• Confidence score of the alert unit 𝑨𝑨𝑼𝑼𝒊𝒊 : 𝐶𝐶𝐶𝐶 𝐴𝐴𝐴𝐴𝑖𝑖 = max𝑗𝑗=1
n𝑖𝑖 𝐶𝐶𝐶𝐶 𝐴𝐴𝑖𝑖𝑖𝑖

• Total confidence score of the attack step: 𝐶𝐶𝐶𝐶𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = ∑𝑖𝑖=1𝑘𝑘 𝑤𝑤𝑖𝑖𝐶𝐶𝐶𝐶 𝐴𝐴𝐴𝐴𝑖𝑖
• Diagnostic support provided by all the matched alerts to node 𝑋𝑋:

𝜆𝜆 �𝑋𝑋 𝑥𝑥 = �1 − 𝐶𝐶𝐶𝐶𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑖𝑖𝑖𝑖 𝑥𝑥 = 0
𝐶𝐶𝐶𝐶𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑖𝑖𝑖𝑖 𝑥𝑥 = 1

40

Attack Template

𝐴𝐴𝐴𝐴𝑖𝑖

indirect
evidence

Presenter
Presentation Notes
After we have confidence score calculated for every alert type in one alert unit 𝐴𝑈 𝑖 , we can calculate the confidence score of the alert unit 𝐴𝑈 𝑖 . The final total confidence score of the attack step can then be calculated. Finally, the diagnostic support 𝜆 𝑋 𝑥 provided by all the matched alerts to the attack step 𝑋 is calculated.

• Objective: To decide if two meta-alerts are correlated or not.
• Graphical representation: a Bayesian network with one root

node 𝑋𝑋 and three leaf nodes 𝑌𝑌1, 𝑌𝑌2, and 𝑌𝑌3.

41

Alert Correlator

Presenter
Presentation Notes
CAPTAR’s anomaly reasoning consists of meta-alert matching and belief propagation. Meta-alert matching is the process of matching meta-alerts to attack steps that trigger them. And the most important step of alert matching is to decide whether two meta-alerts are correlated or not. The alert correlator is designed for this purpose. It is a naive Bayes classifier whose graphical representation is a Bayesian network with one root node 𝑋 and three leaf nodes 𝑌 1 , 𝑌 2 , and 𝑌 3 . Note that this is the not the causal polytree we just mentioned although it is also a Bayesian network. The root node 𝑋 represents the hypothesis that “the two input meta-alerts are correlated” and has two states: 1 and 0. Each leaf node 𝑌 𝑗 stands for one type of observable evidence that helps to evaluate the hypothesis. Based on the observed states at the evidence nodes, one can infer the probability that two meta-alerts are correlated.

• Evidence nodes
• Time Difference: the closeness in the time axis of the two meta-alerts.
• IP Similarity: the similarity of IP addresses related to the two meta-

alerts.

42

Alert Correlator

• Same Service: whether the two meta-
alerts share the same service (i.e., the
same industrial control protocol).

• Belief at root 𝑋𝑋:

• The CORRELATE procedure for two input
meta-alerts 𝑎𝑎 and 𝑏𝑏:

CORRELATE 𝑎𝑎, 𝑏𝑏 = �𝐵𝐵𝐵𝐵𝐵𝐵𝑋𝑋 1 𝑖𝑖𝑖𝑖𝐵𝐵𝐵𝐵𝐵𝐵𝑋𝑋 1 > 0.5
−1 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

𝐵𝐵𝐵𝐵𝐵𝐵𝑋𝑋 𝑥𝑥 = 𝛼𝛼𝑃𝑃 𝑥𝑥 ∏𝑗𝑗=1
3 𝑃𝑃 𝑦𝑦𝑗𝑗 𝑥𝑥

Presenter
Presentation Notes
We consider three kinds of observable evidence while correlating two meta-alerts: time difference (𝑌 1), IP similarity (𝑌 2), and whether they share the same service (𝑌 3). The state of 𝑌 1 depends on the closeness in the time axis of the two meta-alerts. The state of 𝑌 2 depends on the similarity of IP addresses related to the two meta-alerts. 𝑌 3 evaluates whether the two meta-alerts share the same service (i.e., the same industrial control protocol). Using the belief propagation algorithm, the belief at root 𝑋 can be calculated. We say two meta-alerts are correlated if the belief of state 1 at 𝑋 is larger than 0.5.

• The causal reasoning engine is the core component.
• It fetches copies of attack templates 𝐴𝐴𝐴𝐴s from the attack template

database and creates an attack template set 𝑨𝑨𝑨𝑨𝑨𝑨.
• It runs an anomaly reasoning algorithm to perform alert matching and

belief propagation on the attack templates in the attack template set.
• It retrieves meta-alerts from the meta-alert database.
• It uses the alert correlator to correlate meta-alerts during the matching

process.

43

Causal Reasoning Engine

Presenter
Presentation Notes
The causal reasoning engine is the core component of CAPTAR and it interacts with all other three components. When the causal reasoning engine starts, it fetches copies of attack templates from the attack template database and creates an attack template set 𝑨𝑻𝑺. Then it runs an anomaly reasoning algorithm to perform alert matching and belief propagation on the attack templates in 𝑨𝑻𝑺. The meta-alerts used in the alert matching are retrieved from the meta-alert database and the alert correlator is also used to correlate meta-alerts during the matching process.

• Baseline traffic
14 days of simulated DNP3 traffic of one control center communicating with 10 remote terminal
units (RTUs).

• Attacks
• TCP SYN flood
• Data integrity attack
• Command injection

44

Evaluation

TCP SYN flood

Data integrity attack Command injection

Presenter
Presentation Notes
We evaluate the anomaly reasoning ability of CAPTAR via three simulated attack scenarios. The baseline traffic is 14 days of simulated DNP3 traffic of one control center communicating with 10 remote terminal units (RTUs). We create three attack templates representing three common attacks in SCADA networks: TCP SYN flood, data integrity attack, and command injection.

• Detection ability
• CAPTAR together with EDMAND are able to identify and differentiate all three attacks.

• The anomaly reasoning algorithm has an estimated time complexity of 𝑂𝑂(𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾) in
the worst case.

• 𝑀𝑀: number of meta-alerts in the database
• 𝐾𝐾: maximum limit for the number of attack templates to keep for each kind of attack
• 𝑁𝑁: maximum number of nodes in any attack template
• 𝐿𝐿: number of attack templates in the database

• Average time overhead

45

Evaluation

Presenter
Presentation Notes
In our evaluation, we launch the above three attacks in our simulated SCADA network. CAPTAR together with EDMAND are able to identify and differentiate all three attacks.
The anomaly reasoning algorithm has an estimated time complexity of 𝑂(𝐾𝐿𝑀𝑁) in the worst case. 𝑀 is the number of meta-alerts in the database. 𝐾 is the maximum limit for the number of attack templates to keep for each kind of attack. 𝑁 is the maximum number of nodes in any attack template. 𝐿 is the number of attack templates in the database.
To give a better understanding of the time overhead of CAPTAR, we measure the average time to run the FindCorrelation procedure, the belief propagation, and the anomaly reasoning algorithm. We can see that the time overheads are definitely small enough to satisfy the real-time reasoning requirement of the meta-alerts.

Summary

• EDMAND: an edge-based multilevel anomaly detection framework for SCADA systems

• EDMAND divides traffic data into multiple levels and applies appropriate anomaly
detection mechanism to data in each level based on their characteristics.

• EDMAND introduces the concept of confidence into the anomaly detection process
and assign confidence scores to generated alerts.

• CAPTAR: Causal-Polytree-based Anomaly Reasoning for SCADA Networks
• CAPTAR goes on step further than anomaly detection and uses alert correlation and

causal reasoning to understand the causes of the anomalies.

• CAPTAR provides situational awareness that is explainable.

46

Presenter
Presentation Notes
EDMAND is an edge-based multi-level anomaly detection framework for SCADA systems. In EDMAND, I divide network traffic data in SCADA into three levels and applies appropriate anomaly detection mechanism to data in each level based on their characteristics. EDMAND is also one of the first works to introduce the concept of confidence into the anomaly detection process and assign confidence scores to generated alerts.
CAPTAR is a causal-polytree-based anomaly reasoning framework for SCADA networks. Before CAPTAR, most works for SCADA security stop at anomaly detection and true reasons that caused the anomalies are left unexplained. CAPTAR goes one step further and uses causal reasoning to understand the causes of the anomalies. This prevents the operator from being overwhelmed in the huge number of low-quality alerts and provides situational awareness that is explainable.

ED4GAP – Efficient Detection for
GOOSE-based Poisoning Attacks

Problem and Motivation
• GOOSE Poisoning

• Form of false data injection
attack

• Cause of outages and equipment
damage

• Why is this relevant to GOOSE?
• Lack of encryption and

authentication in GOOSE
protocol

• Key Challenges
• Strict timing requirements (4ms)
• Constrained end devices

ED4GAP System

Results
• ED4GAP used Zeek network security

monitor
• GOOSE traffic was synthesized and

replayed [Biswas 2019]
• We have detected all forms of

GOOSE poisoning attacks
• Real-time performance

• Minimal overhead on throughput
• Response time suitable for GOOSE
• Systematic approach to analyze

bottleneck and improve response time

Publication
• Atul Bohara, Jordi Ros-Giralt, Ghada Elbez, Alfonso Valdes, Klara

Nahrstedt, William Sanders, “ED4GAP: Efficient detection for GOOSE-
based poisoning attacks on IEC 61850 substations”, IEEE
SmartGridComm 2020

• Wenyu Ren, Tim Yardley, Klara Nahrstedt, “CAPTAR: Causal-Polytree-
Based Anomaly Reasoning for SCADA Networks”, IEEE Smart Grid
Communications (SmartGridComm), October 2019

• Wenyu Ren, Tim Yardley, Klara Nahrstedt, “EDMAND: Edge-Based
Multi-Level Anomaly Detection for SCADA Networks”, IEEE Smart Grid
Communications (SmartGridComm), October 2018.

51

Additional slides

• Anomaly reasoning algorithm
• The algorithm takes the meta-alert 𝑎𝑎

and the current attack template set
𝑨𝑨𝑨𝑨𝑨𝑨 as inputs and outputs a new
attack template set 𝑨𝑨𝑨𝑨𝑨𝑨𝑛𝑛𝑛𝑛𝑛𝑛 .

• For update to an existing meta-alert,
the algorithm updates the nodes
containing the meta-alert and
initiates belief propagations from
those nodes

• For a new meta-alert, the algorithm
tries to match it to potential nodes
and performs a belief propagation for
every successful match.

53

Causal Reasoning Engine

Details at IEEE
SmartGridComm 2019

Presenter
Presentation Notes
The anomaly reasoning algorithm is called whenever CAPTAR receives a new meta-alert or an update to an existing alert. It takes the meta-alert 𝑎 and the current attack template set 𝑨𝑻𝑺 as inputs. The output is a new attack template set 𝑨𝑻𝑺 𝑛𝑒𝑤 with the meta-alert 𝑎 matched to some of the attack templates inside and belief propagation performed. The procedure has two cases. If 𝑎 is an update to an existing meta-alert, the algorithm updates the nodes containing 𝑎 and initiates belief propagations from those nodes. If 𝑎 is a newly detected meta-alert, the algorithm tries to match 𝑎 to potential nodes and performs a belief propagation for every successful match.

	Anomaly Detection and Causal Reasoning about Attacks �for SCADA Networks
	Outline
	Introduction�Background
	Introduction�Background
	Introduction�Challenge and Motivation
	Introduction�Challenge and Motivation
	Introduction�Challenges and Motivation
	Introduction�Causal Security Analysis
	Introduction�Edge-cloud Design
	EDMAND – Edge-Based Multi-Level Anomaly Detection for SCADA
	Problem Description
	EDMAND Approach
	Placement of EDMAND
	EDMAND Design
	Framework Design
	Anomaly Detector
	Anomaly Detector:�Transport Level
	Anomaly Detector:�Operation Level
	Anomaly Detector:�Content Level
	Anomaly Detector:�Content Level
	Anomaly Detector:�Content Level
	Anomaly Detector:�Content Level
	Anomaly Detector:�Content Level
	Alert Manager
	Alert Aggregator
	Alert Scheduler
	Alert Scheduler
	Evaluation
	Evaluation
	Evaluation
	Evaluation
	CAPTAR – Causal Reasoning about Anomalies in SCADA
	Problem Description
	CAPTAR Approach
	Framework Design
	Meta-alert Database
	Attack Template Database
	Attack Template
	Attack Template
	Attack Template
	Alert Correlator
	Alert Correlator
	Causal Reasoning Engine
	Evaluation
	Evaluation
	Summary
	ED4GAP – Efficient Detection for GOOSE-based Poisoning Attacks
	Problem and Motivation
	ED4GAP System
	Results
	Publication
	Additional slides
	Causal Reasoning Engine

