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From devices to edge servers 

 Part I: a view of cyber-physical scalability 
» A spectrum of platforms and timing requirements 
» Some illustrative applications and their challenges 

 Part II: progress so far, and its implications 
» From fixed priority to federated parallel real-time scheduling 
» Addressing capacity limitations using task details 
» Exploiting mixed-criticality & elasticity for utilization trade-offs 

 Part III: emerging needs and opportunities 
» Integrating mixed-criticality, elasticity for graceful degradation 
» Towards scalable cyber-physical platform frameworks  
 



Part I: a view of cyber-physical scalability 

 A spectrum of platforms and timing requirements 
» Devices, micro-and-mini-boxes, servers, clusters, edge clouds 
» Requirements and assumptions about tasks and time scales 

 
 Some illustrative applications and their challenges 

» Real-time hybrid simulation for earthquake engineering 
» Airdrop (and other stress) testing 
» Catoptric surfaces for redirecting light in occupied spaces 
 



A spectrum of platform resource granularity 
From devices, to micro-boxes, to mini-boxes, to servers, to server clusters 

to server-cluster based edge clouds to clouds 

Server: Linux on 16 
to 64 cores + GPU + 

FPGA, runs 
simulations, other 
resource-intensive 

code 
Cluster: multiple 

servers on shared 
memory, runs larger 
scale computations  

Virtualization enables even finer 
grained resource partitioning  

Mini-box: 
processes data on 
e.g., Linux with ~4 

cores + GPU 
(e.g., RPi 3 B+) 

M. Xu, L. Phan, O. Sokolsky, S. Xi, C. Lu, C. Gill, I. Lee,  “Cache-Aware Compositional Analysis 
of Real-Time Multicore Virtualization Platforms”, Real-Time Systems 51(6), 2015 

Edge cloud: multiple server 
clusters on local network, 
runs even larger and/or 

more numerous 
computations  

Micro-box: connects 
to device, receives 
& sends data (e.g., 

RPi 0) 



Requirements and assumptions 
 About tasks 

» Data and control flow dependences may form a general DAG 
» Some tasks are more critical than others (safety vs. mission) 
» Any performance degradation must be criticality-aware 
» Graceful degradation of lower-criticality performance matters 

 
 About time-scales 

» Recurring deadlines down to milliseconds must be met end-to-
end for cyber-physical integrity at the speed of sound 

» Multi-timescale measurement and enforcement is needed  
 



Application: real-time hybrid simulation (RTHS) 

Physical Test 
Computational 

Simulation 

Physical 
Specimen 

Numerical 
Simulation 

 ✖ 

Finite element model simulation with real-time guarantees, 
integrated safely with control and physical sensing and actuation  

Real-Time Hybrid Simulation 



Application: airdrop (and other stress) testing 
 Airdrop testing for integrity of 

equipment/supply cargo where 
size, weight, and power matter 

 Arduino/RPi0 micro-boxes 
collect data on-board on-line 

 Linux Raspberry Pi 3 mini-
boxes coordinate test itself 
 Do some on-board processing 
 Stream results back to test crew 
 Communicate test status 
 Manage test configuration/modes 

2010 Haiti earthquake relief airdrop 
(from https://en.wikipedia.org/wiki/Airdrop) 



Application: catoptric surface redirects light 
 Hundreds of mirrors on 

individual pan-tilt units 
 Controlled by tens of 

Arduino micro-boxes 
 Several Linux Raspberry Pi 

mini-boxes will be added 
 Overall system management 
 On-line self-calibration 
 Coordination/feedback loops 
 Scripted effects sequences 
 Personalized lighting services 

Steinberg Hall, Washington University in St. Louis https://samfoxschool.wustl.edu/news/13923 



Part II: progress so far, and its implications 
 From fixed priority to federated real-time scheduling 

» Limitations of a narrow thread-scoped (middleware-like) view 
» Scaling dedicated resources for timing assurance, to a limit 

 Addressing capacity limitations using task details 
» Avoids over-reservation of dedicated resources 
» Exploits task structure, improves packing, allows splitting  

 Mixed-criticality & elasticity for utilization trade-offs 
» Mixed-criticality supports tiered degradation under overload 
» Elasticity avoids overload by shifting rates and/or workloads 
 



Middleware-like parallel real-time systems view 
A task may need >1 processors to meet deadlines 

» Precedence constraints among subtasks complicate this 
Schedulability analysis based on tasks’ computational 

requirements and deadline constraints  

Task 1 Task 2 Task 3 

CPU 1 CPU 2 CPU 3 CPU 4 



Parallel synchronous (fork-join) task model 

 Sequences of segments (each with parallel strands) 
 Can enforce strands’ priorities via Linux (with the 

RT_PREEMPT patch) real-time thread priorities 
 Strands barrier synchronize at end of a segment 

» Implemented using Linux threads and futexes 



Example execution trace: strands on cores 

 Fischer Baruah Baker First Fit Decreasing (FBB-FFD) bin 
packing of stands onto cores (alternatively, worst fit) 
» Prioritize strands by relative deadline (earlierhigher) 

A. Saifullah, K. Agrawal, C. Lu, and C. Gill, “Multi-core Real-Time Scheduling for 
Generalized Parallel Task Models”, RTSS 2011 



Scalability limitations 
 At 500Hz (2 msec 

periods), 12-core task 
sets failed to meet 
theoretical bound 
» Largely due to DAQ 

I/O bottlenecks 
» Hand-crafted 

implementation ran 
tasks with 4ms periods 
feasibly on 12 cores 

D. Ferry, J. Li, M. Mahadevan, K. Agrawal, C. Gill, and C. Lu,  
“A Real-Time Scheduling Service for Parallel Tasks”, RTAS 2013 



Towards general parallel real-time systems 

General DAG Model for Task τi 
»Node: subtask τi,j (weight=Ci,j) 
»Edge: dependence between nodes 

Span (Critical Path Length) Li: 
»Highest-weight chain of nodes 
»Execution time on ∞ CPUs 

Work (Computation Time) Ci: 
»Execution time on 1 CPU 

Ci = 47 
Li = 32  

4 

1 

15 

11 

1 
1 

1 

1 

1 

2 

3 

2 

4 



Federated scheduling (FS) 

Task 1 Task 2 Task 3 

CPU 
1 

Task 4 

CPU 
2 

CPU 
3 

CPU 
4 

CPU 
6 

CPU 
8 

CPU 
9 

CPU 
10 

CPU 
5 

CPU 
7 

 In general a parallel task requires         = Ai + εi CPUs to guarantee 
timely completion    (Ai is an integer, 0 ≤ εi ≤ 1)  
 

 Federated scheduling allocates            CPUs 

J. Li, J.-J. Chen, K. Agrawal, C. Lu, C. Gill, A. Saifullah,  
"Analysis of Federated and Global Scheduling for Parallel Real-Time Tasks,” ECRTS 2014 



CyberMech parallel RTHS architecture 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Parallel 
Simulation Controller 

I/O Hardware 

Actuators Shared Memory 

Sensors 

Physical 
Specimen 

Hardware I/O 
Task 

D. Ferry, G. Bunting, A. Maghareh, S. Dyke, A. Prakash, K. Agrawal, C. Gill, C. Lu,   
“Real-time System Support for Hybrid Structural Simulation,” EMSOFT 2014 

Federated scheduling in OpenMP/Cilk Plus, safe multithreading removes I/O bottlenecks 



Scalable up to a point 

 Realistic scale experiments 
» Using hydraulic actuators at 

Purdue University Bowen Lab 
 First ever fully parallel RTHS 

» Experiments with up to 1322 
degree-of-freedom simulations 
on 13 (of 16) cores at 1024Hz 

» Suitable for 9-story buildings 
 Communication costs limit this 

» Especially between threads on 
cores in different chip sockets 



Heavy versus light parallel real-time tasks 
Federated scheduling classifies tasks as 

»Heavy tasks, Ui ≥ 1, require parallel execution 
» Light tasks, Ui < 1, can execute sequentially 

 
Heavy 
task 1 

Heavy 
task 2 Light tasks 



Federated scheduling can be inefficient 

 Processors allocated to a heavy task can’t 
be used by any other task when idling 
 
 
 
 
 

 The number of processors allocated to 
each heavy task may be pessimistic 
» Computed based on its worst-case DAG: mi =                   

One or more processors idle 



Idea: exploit DAG structure to improve utilization 
 Use internal graph structure, not just basic parameters Ci, Li, Di,            

for a more exact calculation of # cores needed by heavy tasks 

 Reallocate extra cores for light tasks[1] (or elastic or mixed-critical use) 

Heavy 
task 1 

Heavy 
task 2 Light tasks 

Reduced # 
of cores n1 

Reduced # 
Of cores n2 

Increased # of cores for  
scheduling light tasks 

[1] Brandenburg et al., “Global scheduling not required: Simple, near-optimal 
multiprocessor real-time scheduling with semi-partitioned reservations”, RTSS 

2016 



New algorithm for scheduling heavy tasks 
 
 

Subgraph of vi,0:  {vi,0, vi,3, vi,7, 
vi,9} 
Subgraph work of vi,0 = 18 + 9 + 
18 + 7 = 52 

1. For a given number mi (starts at ⌈Ci/Di⌉) 
cores for 𝝉𝝉i; for each iteration 

a. Choose mi vertices with greatest 
subgraph work to schedule 

b. Schedule them until some 
unchosen vertex has subgraph 
work greater than that of a chosen 
one  
• Vertices can be preempted       

(“task splitting”) 
 

2. If successful, return the schedule. If 
failed, increase mi by 1 core and go to 
step 1 S. Dinh, C. Gill, K. Agrawal, “Efficient Deterministic Federated Scheduling for 

Parallel Real-time Tasks,” RTCSA 2020 

  



Comparison with other federated approaches 

• The new algorithm needs 3 processors 
• Fully exploits tasks’ DAGs 

 
• Original federated scheduling needs   
⌈(Ci – Li)/(Di - Li)⌉ = 11 processors 

• Only considers tasks’ parameters Ci, Li, and Di 

 
• Semi-federated scheduling[2] needs  
     ⌊ (Ci – Li)/(Di - Li) ⌋ = 10       
 processors 

• Partially consider tasks’ DAGs for its runtime dispatcher 

[2] Jiang et al., “Semi-Federated Scheduling of Parallel Real-Time Tasks on Multiprocessors,” RTSS 2017 



Mixed-criticality improves resource efficiency 

Mixed-criticality scheduling of parallel real-time tasks 
  Provides different levels of real-time guarantees 

  

100ms 

Very rare cases: 
only guarantee that 
high-criticality tasks 
meet deadlines 

10ms 

core 1 

core 2 

core 3 

Most cases:  
guarantee that both high 
and low-criticality tasks 
meet deadlines 

80ms 

0 40 

。。。 

400 440 

overrun usually 



Mixed-criticality federated scheduling 
Classify tasks into N types (by criticality) 
For each task in each type, calculate/assign  
  (1) virtual deadline for finishing 
  (2) dedicated cores in typical state 
  (3) dedicated cores in critical state 

  

Type 1 task 

Type 3 task 

Critical-state Typical-
state 

m 
cores 

Type 1 task 

Type 2 task 

Type 2 task 

Virtual 
deadline 

J. Li, D. Ferry, S. Ahuja, K. Agrawal, C. Lu, C. Gill,                                          
“Mixed-Criticality Federated Scheduling for Parallel Real-time Tasks,” RTAS 2016 



Selective degradation by criticality 
MCFS scheduler for OpenMP tasks performs similarly 
in both numerical and empirical evaluations 

  

0 1 2 3 4 

100
% 

80% 

60% 

40% 

20% 

0% 



Discretely elastic parallel real-time tasks 

Task     has elastic coefficient     and     unique 
modes of operation 

Each mode of operation              has a triple: 
»Period (and implicit deadline)  
»Work  
»Span (critical path length)  

26 



n is the number of tasks and m is the number of processors 

Selecting mode of operation per task is weakly NP Hard 
 Pseudo-polynomial time dynamic programming 

algorithm selects one mode of operation per task to 

Discretely elastic parallel real-time tasks 
27 



28 

J. Orr, J. Condori, C. Gill, S. Baruah, K. Agrawal, S. Dyke, A. Prakash, I. Bate, C. Wong, S. 
Adhikari, ”Elastic Scheduling of Parallel Real-Time Tasks with Discrete Utilizations," RTNS 2020 

An expanding model of elasticity 
 Rate-elastic parallel real-time tasks 

» Minimum inter-arrival time (period) can be varied elastically 
» Task’s work and span are fixed  

 Computationally elastic parallel real-time tasks 
» Sum of subtask execution times (work) can be varied elastically 
» Task’s span,  period, and (implicit) deadline are fixed 

 
 

 Combined elasticity of parallel real-time tasks 
» Tasks’ periods, execution times (work), spans can all be varied 

J. Orr, C. Gill, K. Agrawal, S. Baruah, C. Cianfarani, P. Ang, C. Wong 
”Elasticity of Workloads and Periods of Parallel Real-Time Tasks," RTNS 2018 



Benefits of combined elasticity 

A wider range of adaptive tasks can be modeled 
Encodes specific task details (e.g., harmonic rates) 

29 



Adaptive rescheduling design & implementation 

CP
U 0 

CP
U 3 

CP
U 4 

CP
U 5 

CP
U 6 

CP
U 7 

CP
U 8 

CP
U 9 

CPU 
10 

Shared Memory 

Scheduler Task 1 Task 2 Task 3 

1 Task notifies  
scheduler of mode 

change 

2 Scheduler performs  reschedule, updates shared memory with core assignments 

3 Scheduler notifies 
tasks of completed 

reschedule 

4 Tasks read  
shared memory, 

update which cores 
they use 

CP
U 1 

CP
U 2 



Task notification via POSIX RT signals   
» Ranged from 11.23 μsec to 110.03 μsec, often around 18 μsec 

Thread priority change (and possible core migration) 
» Ranged from 2.67 μsec to 76.77 μsec, often around 30 μsec  

Adaptation mechanism overheads are acceptable 



Part III: emerging needs and opportunities 

 Integrating mixed-criticality and elasticity 
» Supporting nuanced graceful degradation during overload 
» Increasing common-case utilization, even on mini-boxes 

 
 Toward scalable cyber-physical platform frameworks 

» Configurable, factory-driven, pattern-oriented software 
» Necessary analysis, mechanisms, and coordination woven in 
» Linux as an extensible (soft?) real-time operating system 



Why elasticity in mixed-criticality PRT systems 
Can “re-size” workloads and/or periods adaptively, to degrade lower-criticality 

components gracefully when higher-criticality utilizations surge, e.g., if a 
parallel high-criticality component must switch to using a more demanding 

computation in a given RTHS with millisecond real-time guarantees, and a parallel 
1000 degree-of-freedom FEM integrated safely with control, sensing, and actuation 



Key idea: above Zi decrease cores Used 

Nominal, overload, degraded ranges of utilization 
» Same nominal utilization below designated criticality level 
» Overload utilization at designated criticality level (if it’s > 0) 
» Degrading (non-increasing) utilizations at even higher levels 

Task Ei Zi mi[0] mi[1] mi[2] 

τ1 5 0 8 6 4 
τ2 4 0 6 4 2 
τ3 3 1 4 6 2 
τ4 2 1 4 5 2 
τ5 1 2 2 2 6 

degraded 
overload 
nominal 



Compress lower-criticality PRT tasks elastically 

 
 In each mode, can vary e.g., Di, Li, and Ci 

» Only compress tasks whose criticality Zi is below current level j 
» Still checks whether all tasks are schedulable on m cores 

(criticality insensitive compression of lower criticality tasks, 
αi is Zi if task τi has overrun its virtual deadline, or 0 if it has not) 

 



Elastic compression strategies 
Both strategies preserve criticality invariant 

» Higher criticality tasks meet deadlines, even in overload 
» If necessary, can drop most demanding lowest criticality tasks 

Criticality insensitive strategy 
» Compresses all tasks whose Zi is below current criticality level j 
» Exploits elasticity of entire compressible set at once 

Criticality sensitive strategy 
» Compress level-0 tasks, then level-1, etc. up to j-1 
» Maintains strict criticality ordering, but still degrades gracefully  

C. Gill, J. Orr, S. Harris, “Supporting Graceful Degradation through Elasticity in 
Mixed-Criticality Federated Scheduling,” 6th WMC at RTSS, December 2018 



Why scalable cyber-physical platform frameworks 

Elastic mixed-criticality mini-box Tester’s commodity 
iP d 

wireless 
network 

real-time tasks 

prioritized 
threads 

configuration 
descriptors 

software factories 

configuration 
descriptors 

software factories 

user interface 

Linux 

GPU CPU (FPGA?) 

iOS 

GPU      CPU 

data and status 

commands 

criticality/status 
monitors 
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 Per-task objective functions for 
application-specific adaptive 
mode change behavior 
» Event-driven or timing-based 

 System-wide communication 
for coordination and scheduling 

 Managers maintain period, 
deadline, CPU allocation; and 
track the objective function 

 C++ in OpenMP on Linux     
with RT patch, using shared 
memory and POSIX RT signals 

RTHS platform design and implementation 



Semi-federated scheduling 

Task 1 Task 2 Task 3 

CPU 
1 

Task 4 
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3 

CPU 
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 In general a parallel task requires         = Ai + εi (Ai is integer, 0 ≤ εi ≤ 
1) CPUs to guarantee completion 
 

 Semi-federated scheduling first allocates          = Ai CPUs 
» Remaining εi scheduled as sequential tasks on remaining CPUs (e.g. via partitioned EDF) 

X. Jiang, N. Guan, X. Long, and W. Yi,  
“Semi-Federated Scheduling of Parallel Real-Time Tasks on Multiprocessors,” RTSS 2017 



Comparison: Dinh’s vs other approaches, cont. 

[3] Ueter et al., Reservation-Based Federated Scheduling for Parallel Real-Time Tasks, RTSS 
2018 
[4] Baruah et al  Federated Scheduling of Sporadic DAG Task Systems  IPDPS 2015 

 Reservation-based federated scheduling[3] with                         
mi = ⌈(Ci – Li)/(Di - Li)⌉ = 11  

» Reservation servers require total budget ≥ Ci + Li(mi–1) = 122 + 36*10 = 482 
» Does not consider tasks’ DAGs 

 List scheduling[4] needs 4 processors 
» Considers tasks’ DAGs, but nodes are scheduled non-preemptively 



Dinh’s results for heavy tasks only 
 Synthetic task sets contain only heavy tasks 

» RandFixedSum is used to generate individual utilization of heavy tasks 
» Deadlines are set equal to periods 
» For each value of U, 100 task sets were generated 

 
 Compare the proposed algorithm (denoted by PRO) with Li et al. (denoted by 

LI) and Baruah et al. (denoted by BAR) 

m = 32 cores, n = 10 tasks m = 64 cores, n = 15 tasks 



Dinh’s results for heavy and light tasks 
 Synthetic task sets contain both heavy and light tasks 

» Control utilization ratio of heavy tasks in each task set, 500 task sets generated per data point 
» Use RandFixedSum to generate individual utilizations for heavy and light tasks 
» Consider Worst-Fit, First-Fit, Best-Fit and 2 tests for partitioning sequential tasks to processors 
» BAR and RESV use Best Fit with DBF test, SEMI uses Worst Fit with DEN test 

 Compare also with Jiang et al. (denoted as SEMI), Ueter et al. (denoted as RESV), 
and a stretching algorithm by Qamhieh et al.[5] (denoted by STRP and STRG) 

[5] Qamhieh et al., A Stretching Algorithm for Parallel Real-Time DAG Tasks on Multiprocessor Systems, RTNS 
2014 

m = 32,  
Uh = 0.5, 
nh = [2, 
7], nl = 
40 

m = 64,     
Uh = 0.5,   
nh = [4, 
14], nl = 
80 



Motivation for adaptive RTHS 

Non-linear physical behavior  
»Variable computational loads (particle vs. Kalman filters) 
»Diversity of components’ behaviors during an experiment 

 
More aggressive experiments 

»Multiple physical components, multiple controllers 
» Larger, more detailed sub-structures 
»Variability of computations’ 
rates and resource demands 



Elastic scheduling as constrained optimization 
Chantem et al. defined this as an optimization problem 

» Minimize a weighted sum of squares of the differences between 
the chosen utilization for each task and its maximum utilization 

» Subject to utilizations being between minimum and maximum 
values and the sum not exceeding the available utilization 

T. Chantem, X. S. Hu, and M. D. Lemmon,  
“Generalized Elastic Scheduling for Real-Time Tasks,” RTSS 2006 



Elastic compression of parallel real-time tasks 

Updates optimization from Chantem et al. (RTSS 2006)  
» Uses utilization definition for parallel real-time tasks 
» Allows either period or work to be compressed elastically 
» Checks schedulability under Federated Scheduling on m cores 



Experiments compared varying a task’s Di vs. its Ci 

Comparable tasks compressed to the same utilization 
» Temporally vs. computationally elastic tasks reached same point 

 

Equivalence of rate versus workload compression 



Total cores available matters for EMCFS 

Upper bound (overprovisioning) 
» Sum of max cores each task needs:  
» All tasks could run in overload  

 
Sufficient cores available (design target) 

» Tasks utilizations can be met at each level:  
 

 Lower bound (underprovisioning) 
» Below this tasks are dropped at every level:    
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