

Chris Gill
Professor of Computer Science and Engineering
Washington University in St. Louis

Real-time Virtualization, Concurrency Platforms,
and Middleware: from Devices to Edge Servers

TECoSA Seminar, Thursday, March 4, 2021
ITM School, KTH Royal Institute of Technology

From devices to edge servers

 Part I: a view of cyber-physical scalability
» A spectrum of platforms and timing requirements
» Some illustrative applications and their challenges

 Part II: progress so far, and its implications
» From fixed priority to federated parallel real-time scheduling
» Addressing capacity limitations using task details
» Exploiting mixed-criticality & elasticity for utilization trade-offs

 Part III: emerging needs and opportunities
» Integrating mixed-criticality, elasticity for graceful degradation
» Towards scalable cyber-physical platform frameworks

Part I: a view of cyber-physical scalability

 A spectrum of platforms and timing requirements
» Devices, micro-and-mini-boxes, servers, clusters, edge clouds
» Requirements and assumptions about tasks and time scales

 Some illustrative applications and their challenges

» Real-time hybrid simulation for earthquake engineering
» Airdrop (and other stress) testing
» Catoptric surfaces for redirecting light in occupied spaces

A spectrum of platform resource granularity
From devices, to micro-boxes, to mini-boxes, to servers, to server clusters

to server-cluster based edge clouds to clouds

Server: Linux on 16
to 64 cores + GPU +

FPGA, runs
simulations, other
resource-intensive

code
Cluster: multiple

servers on shared
memory, runs larger
scale computations

Virtualization enables even finer
grained resource partitioning

Mini-box:
processes data on
e.g., Linux with ~4

cores + GPU
(e.g., RPi 3 B+)

M. Xu, L. Phan, O. Sokolsky, S. Xi, C. Lu, C. Gill, I. Lee, “Cache-Aware Compositional Analysis
of Real-Time Multicore Virtualization Platforms”, Real-Time Systems 51(6), 2015

Edge cloud: multiple server
clusters on local network,
runs even larger and/or

more numerous
computations

Micro-box: connects
to device, receives
& sends data (e.g.,

RPi 0)

Requirements and assumptions
 About tasks

» Data and control flow dependences may form a general DAG
» Some tasks are more critical than others (safety vs. mission)
» Any performance degradation must be criticality-aware
» Graceful degradation of lower-criticality performance matters

 About time-scales

» Recurring deadlines down to milliseconds must be met end-to-
end for cyber-physical integrity at the speed of sound

» Multi-timescale measurement and enforcement is needed

Application: real-time hybrid simulation (RTHS)

Physical Test
Computational

Simulation

Physical
Specimen

Numerical
Simulation

 ✖

Finite element model simulation with real-time guarantees,
integrated safely with control and physical sensing and actuation

Real-Time Hybrid Simulation

Application: airdrop (and other stress) testing
 Airdrop testing for integrity of

equipment/supply cargo where
size, weight, and power matter

 Arduino/RPi0 micro-boxes
collect data on-board on-line

 Linux Raspberry Pi 3 mini-
boxes coordinate test itself
 Do some on-board processing
 Stream results back to test crew
 Communicate test status
 Manage test configuration/modes

2010 Haiti earthquake relief airdrop
(from https://en.wikipedia.org/wiki/Airdrop)

Application: catoptric surface redirects light
 Hundreds of mirrors on

individual pan-tilt units
 Controlled by tens of

Arduino micro-boxes
 Several Linux Raspberry Pi

mini-boxes will be added
 Overall system management
 On-line self-calibration
 Coordination/feedback loops
 Scripted effects sequences
 Personalized lighting services

Steinberg Hall, Washington University in St. Louis https://samfoxschool.wustl.edu/news/13923

Part II: progress so far, and its implications
 From fixed priority to federated real-time scheduling

» Limitations of a narrow thread-scoped (middleware-like) view
» Scaling dedicated resources for timing assurance, to a limit

 Addressing capacity limitations using task details
» Avoids over-reservation of dedicated resources
» Exploits task structure, improves packing, allows splitting

 Mixed-criticality & elasticity for utilization trade-offs
» Mixed-criticality supports tiered degradation under overload
» Elasticity avoids overload by shifting rates and/or workloads

Middleware-like parallel real-time systems view
A task may need >1 processors to meet deadlines

» Precedence constraints among subtasks complicate this
Schedulability analysis based on tasks’ computational

requirements and deadline constraints

Task 1 Task 2 Task 3

CPU 1 CPU 2 CPU 3 CPU 4

Parallel synchronous (fork-join) task model

 Sequences of segments (each with parallel strands)
 Can enforce strands’ priorities via Linux (with the

RT_PREEMPT patch) real-time thread priorities
 Strands barrier synchronize at end of a segment

» Implemented using Linux threads and futexes

Example execution trace: strands on cores

 Fischer Baruah Baker First Fit Decreasing (FBB-FFD) bin
packing of stands onto cores (alternatively, worst fit)
» Prioritize strands by relative deadline (earlierhigher)

A. Saifullah, K. Agrawal, C. Lu, and C. Gill, “Multi-core Real-Time Scheduling for
Generalized Parallel Task Models”, RTSS 2011

Scalability limitations
 At 500Hz (2 msec

periods), 12-core task
sets failed to meet
theoretical bound
» Largely due to DAQ

I/O bottlenecks
» Hand-crafted

implementation ran
tasks with 4ms periods
feasibly on 12 cores

D. Ferry, J. Li, M. Mahadevan, K. Agrawal, C. Gill, and C. Lu,
“A Real-Time Scheduling Service for Parallel Tasks”, RTAS 2013

Towards general parallel real-time systems

General DAG Model for Task τi
»Node: subtask τi,j (weight=Ci,j)
»Edge: dependence between nodes

Span (Critical Path Length) Li:
»Highest-weight chain of nodes
»Execution time on ∞ CPUs

Work (Computation Time) Ci:
»Execution time on 1 CPU

Ci = 47
Li = 32

4

1

15

11

1
1

1

1

1

2

3

2

4

Federated scheduling (FS)

Task 1 Task 2 Task 3

CPU
1

Task 4

CPU
2

CPU
3

CPU
4

CPU
6

CPU
8

CPU
9

CPU
10

CPU
5

CPU
7

 In general a parallel task requires = Ai + εi CPUs to guarantee
timely completion (Ai is an integer, 0 ≤ εi ≤ 1)

 Federated scheduling allocates CPUs

J. Li, J.-J. Chen, K. Agrawal, C. Lu, C. Gill, A. Saifullah,
"Analysis of Federated and Global Scheduling for Parallel Real-Time Tasks,” ECRTS 2014

CyberMech parallel RTHS architecture

Parallel
Simulation Controller

I/O Hardware

Actuators Shared Memory

Sensors

Physical
Specimen

Hardware I/O
Task

D. Ferry, G. Bunting, A. Maghareh, S. Dyke, A. Prakash, K. Agrawal, C. Gill, C. Lu,
“Real-time System Support for Hybrid Structural Simulation,” EMSOFT 2014

Federated scheduling in OpenMP/Cilk Plus, safe multithreading removes I/O bottlenecks

Scalable up to a point

 Realistic scale experiments
» Using hydraulic actuators at

Purdue University Bowen Lab
 First ever fully parallel RTHS

» Experiments with up to 1322
degree-of-freedom simulations
on 13 (of 16) cores at 1024Hz

» Suitable for 9-story buildings
 Communication costs limit this

» Especially between threads on
cores in different chip sockets

Heavy versus light parallel real-time tasks
Federated scheduling classifies tasks as

»Heavy tasks, Ui ≥ 1, require parallel execution
» Light tasks, Ui < 1, can execute sequentially

Heavy
task 1

Heavy
task 2 Light tasks

Federated scheduling can be inefficient

 Processors allocated to a heavy task can’t
be used by any other task when idling

 The number of processors allocated to
each heavy task may be pessimistic
» Computed based on its worst-case DAG: mi =

One or more processors idle

Idea: exploit DAG structure to improve utilization
 Use internal graph structure, not just basic parameters Ci, Li, Di,

for a more exact calculation of # cores needed by heavy tasks

 Reallocate extra cores for light tasks[1] (or elastic or mixed-critical use)

Heavy
task 1

Heavy
task 2 Light tasks

Reduced #
of cores n1

Reduced #
Of cores n2

Increased # of cores for
scheduling light tasks

[1] Brandenburg et al., “Global scheduling not required: Simple, near-optimal
multiprocessor real-time scheduling with semi-partitioned reservations”, RTSS

2016

New algorithm for scheduling heavy tasks

Subgraph of vi,0: {vi,0, vi,3, vi,7,
vi,9}
Subgraph work of vi,0 = 18 + 9 +
18 + 7 = 52

1. For a given number mi (starts at ⌈Ci/Di⌉)
cores for 𝝉𝝉i; for each iteration

a. Choose mi vertices with greatest
subgraph work to schedule

b. Schedule them until some
unchosen vertex has subgraph
work greater than that of a chosen
one
• Vertices can be preempted

(“task splitting”)

2. If successful, return the schedule. If
failed, increase mi by 1 core and go to
step 1 S. Dinh, C. Gill, K. Agrawal, “Efficient Deterministic Federated Scheduling for

Parallel Real-time Tasks,” RTCSA 2020

Comparison with other federated approaches

• The new algorithm needs 3 processors
• Fully exploits tasks’ DAGs

• Original federated scheduling needs
⌈(Ci – Li)/(Di - Li)⌉ = 11 processors

• Only considers tasks’ parameters Ci, Li, and Di

• Semi-federated scheduling[2] needs
 ⌊ (Ci – Li)/(Di - Li) ⌋ = 10
 processors

• Partially consider tasks’ DAGs for its runtime dispatcher

[2] Jiang et al., “Semi-Federated Scheduling of Parallel Real-Time Tasks on Multiprocessors,” RTSS 2017

Mixed-criticality improves resource efficiency

Mixed-criticality scheduling of parallel real-time tasks
 Provides different levels of real-time guarantees

100ms

Very rare cases:
only guarantee that
high-criticality tasks
meet deadlines

10ms

core 1

core 2

core 3

Most cases:
guarantee that both high
and low-criticality tasks
meet deadlines

80ms

0 40

。。。

400 440

overrun usually

Mixed-criticality federated scheduling
Classify tasks into N types (by criticality)
For each task in each type, calculate/assign
 (1) virtual deadline for finishing
 (2) dedicated cores in typical state
 (3) dedicated cores in critical state

Type 1 task

Type 3 task

Critical-state Typical-
state

m
cores

Type 1 task

Type 2 task

Type 2 task

Virtual
deadline

J. Li, D. Ferry, S. Ahuja, K. Agrawal, C. Lu, C. Gill,
“Mixed-Criticality Federated Scheduling for Parallel Real-time Tasks,” RTAS 2016

Selective degradation by criticality
MCFS scheduler for OpenMP tasks performs similarly
in both numerical and empirical evaluations

0 1 2 3 4

100
%

80%

60%

40%

20%

0%

Discretely elastic parallel real-time tasks

Task has elastic coefficient and unique
modes of operation

Each mode of operation has a triple:
»Period (and implicit deadline)
»Work
»Span (critical path length)

26

n is the number of tasks and m is the number of processors

Selecting mode of operation per task is weakly NP Hard
 Pseudo-polynomial time dynamic programming

algorithm selects one mode of operation per task to

Discretely elastic parallel real-time tasks
27

28

J. Orr, J. Condori, C. Gill, S. Baruah, K. Agrawal, S. Dyke, A. Prakash, I. Bate, C. Wong, S.
Adhikari, ”Elastic Scheduling of Parallel Real-Time Tasks with Discrete Utilizations," RTNS 2020

An expanding model of elasticity
 Rate-elastic parallel real-time tasks

» Minimum inter-arrival time (period) can be varied elastically
» Task’s work and span are fixed

 Computationally elastic parallel real-time tasks
» Sum of subtask execution times (work) can be varied elastically
» Task’s span, period, and (implicit) deadline are fixed

 Combined elasticity of parallel real-time tasks
» Tasks’ periods, execution times (work), spans can all be varied

J. Orr, C. Gill, K. Agrawal, S. Baruah, C. Cianfarani, P. Ang, C. Wong
”Elasticity of Workloads and Periods of Parallel Real-Time Tasks," RTNS 2018

Benefits of combined elasticity

A wider range of adaptive tasks can be modeled
Encodes specific task details (e.g., harmonic rates)

29

Adaptive rescheduling design & implementation

CP
U 0

CP
U 3

CP
U 4

CP
U 5

CP
U 6

CP
U 7

CP
U 8

CP
U 9

CPU
10

Shared Memory

Scheduler Task 1 Task 2 Task 3

1 Task notifies
scheduler of mode

change

2 Scheduler performs reschedule, updates shared memory with core assignments

3 Scheduler notifies
tasks of completed

reschedule

4 Tasks read
shared memory,

update which cores
they use

CP
U 1

CP
U 2

Task notification via POSIX RT signals
» Ranged from 11.23 μsec to 110.03 μsec, often around 18 μsec

Thread priority change (and possible core migration)
» Ranged from 2.67 μsec to 76.77 μsec, often around 30 μsec

Adaptation mechanism overheads are acceptable

Part III: emerging needs and opportunities

 Integrating mixed-criticality and elasticity
» Supporting nuanced graceful degradation during overload
» Increasing common-case utilization, even on mini-boxes

 Toward scalable cyber-physical platform frameworks

» Configurable, factory-driven, pattern-oriented software
» Necessary analysis, mechanisms, and coordination woven in
» Linux as an extensible (soft?) real-time operating system

Why elasticity in mixed-criticality PRT systems
Can “re-size” workloads and/or periods adaptively, to degrade lower-criticality

components gracefully when higher-criticality utilizations surge, e.g., if a
parallel high-criticality component must switch to using a more demanding

computation in a given RTHS with millisecond real-time guarantees, and a parallel
1000 degree-of-freedom FEM integrated safely with control, sensing, and actuation

Key idea: above Zi decrease cores Used

Nominal, overload, degraded ranges of utilization
» Same nominal utilization below designated criticality level
» Overload utilization at designated criticality level (if it’s > 0)
» Degrading (non-increasing) utilizations at even higher levels

Task Ei Zi mi[0] mi[1] mi[2]

τ1 5 0 8 6 4
τ2 4 0 6 4 2
τ3 3 1 4 6 2
τ4 2 1 4 5 2
τ5 1 2 2 2 6

degraded
overload
nominal

Compress lower-criticality PRT tasks elastically

 In each mode, can vary e.g., Di, Li, and Ci

» Only compress tasks whose criticality Zi is below current level j
» Still checks whether all tasks are schedulable on m cores

(criticality insensitive compression of lower criticality tasks,
αi is Zi if task τi has overrun its virtual deadline, or 0 if it has not)

Elastic compression strategies
Both strategies preserve criticality invariant

» Higher criticality tasks meet deadlines, even in overload
» If necessary, can drop most demanding lowest criticality tasks

Criticality insensitive strategy
» Compresses all tasks whose Zi is below current criticality level j
» Exploits elasticity of entire compressible set at once

Criticality sensitive strategy
» Compress level-0 tasks, then level-1, etc. up to j-1
» Maintains strict criticality ordering, but still degrades gracefully

C. Gill, J. Orr, S. Harris, “Supporting Graceful Degradation through Elasticity in
Mixed-Criticality Federated Scheduling,” 6th WMC at RTSS, December 2018

Why scalable cyber-physical platform frameworks

Elastic mixed-criticality mini-box Tester’s commodity
iP d

wireless
network

real-time tasks

prioritized
threads

configuration
descriptors

software factories

configuration
descriptors

software factories

user interface

Linux

GPU CPU (FPGA?)

iOS

GPU CPU

data and status

commands

criticality/status
monitors

Acknowledgements

=Gregory Bunting
Johnny Condori
Hugo Esquivel
Amin Maghareh
Prof. Shirley Dyke
Prof. Arun Prakash

James Orr
Steven Harris
-David Ferry

+Jing Li
*Abusayeed Saifullah

Prof. Kunal Agrawal
Prof. Chenyang Lu

Prof. Sanjoy Baruah
Prof. Roger Chamberlain

Prof. Chandler Ahrens

Supported in part by NSF grants CNS-1136073, CNS-1136075, CCF-1337218

Christian Cianfarani
Christopher Wong

Sabina Adhikari

=now at Sandia National Labs
-now at St. Louis University

+now at New Jersey Institute of Technology
*now at Wayne State University

Phyllis Ang

Thank you for your interest in
this work!

Any questions?

Backup Slides

 Per-task objective functions for
application-specific adaptive
mode change behavior
» Event-driven or timing-based

 System-wide communication
for coordination and scheduling

 Managers maintain period,
deadline, CPU allocation; and
track the objective function

 C++ in OpenMP on Linux
with RT patch, using shared
memory and POSIX RT signals

RTHS platform design and implementation

Semi-federated scheduling

Task 1 Task 2 Task 3

CPU
1

Task 4

CPU
2

CPU
4

CPU
6

CPU
7

CPU
8

CPU
9

CPU
10

CPU
3

CPU
5

CPU
7

 In general a parallel task requires = Ai + εi (Ai is integer, 0 ≤ εi ≤
1) CPUs to guarantee completion

 Semi-federated scheduling first allocates = Ai CPUs
» Remaining εi scheduled as sequential tasks on remaining CPUs (e.g. via partitioned EDF)

X. Jiang, N. Guan, X. Long, and W. Yi,
“Semi-Federated Scheduling of Parallel Real-Time Tasks on Multiprocessors,” RTSS 2017

Comparison: Dinh’s vs other approaches, cont.

[3] Ueter et al., Reservation-Based Federated Scheduling for Parallel Real-Time Tasks, RTSS
2018
[4] Baruah et al Federated Scheduling of Sporadic DAG Task Systems IPDPS 2015

 Reservation-based federated scheduling[3] with
mi = ⌈(Ci – Li)/(Di - Li)⌉ = 11

» Reservation servers require total budget ≥ Ci + Li(mi–1) = 122 + 36*10 = 482
» Does not consider tasks’ DAGs

 List scheduling[4] needs 4 processors
» Considers tasks’ DAGs, but nodes are scheduled non-preemptively

Dinh’s results for heavy tasks only
 Synthetic task sets contain only heavy tasks

» RandFixedSum is used to generate individual utilization of heavy tasks
» Deadlines are set equal to periods
» For each value of U, 100 task sets were generated

 Compare the proposed algorithm (denoted by PRO) with Li et al. (denoted by

LI) and Baruah et al. (denoted by BAR)

m = 32 cores, n = 10 tasks m = 64 cores, n = 15 tasks

Dinh’s results for heavy and light tasks
 Synthetic task sets contain both heavy and light tasks

» Control utilization ratio of heavy tasks in each task set, 500 task sets generated per data point
» Use RandFixedSum to generate individual utilizations for heavy and light tasks
» Consider Worst-Fit, First-Fit, Best-Fit and 2 tests for partitioning sequential tasks to processors
» BAR and RESV use Best Fit with DBF test, SEMI uses Worst Fit with DEN test

 Compare also with Jiang et al. (denoted as SEMI), Ueter et al. (denoted as RESV),
and a stretching algorithm by Qamhieh et al.[5] (denoted by STRP and STRG)

[5] Qamhieh et al., A Stretching Algorithm for Parallel Real-Time DAG Tasks on Multiprocessor Systems, RTNS
2014

m = 32,
Uh = 0.5,
nh = [2,
7], nl =
40

m = 64,
Uh = 0.5,
nh = [4,
14], nl =
80

Motivation for adaptive RTHS

Non-linear physical behavior
»Variable computational loads (particle vs. Kalman filters)
»Diversity of components’ behaviors during an experiment

More aggressive experiments

»Multiple physical components, multiple controllers
» Larger, more detailed sub-structures
»Variability of computations’
rates and resource demands

Elastic scheduling as constrained optimization
Chantem et al. defined this as an optimization problem

» Minimize a weighted sum of squares of the differences between
the chosen utilization for each task and its maximum utilization

» Subject to utilizations being between minimum and maximum
values and the sum not exceeding the available utilization

T. Chantem, X. S. Hu, and M. D. Lemmon,
“Generalized Elastic Scheduling for Real-Time Tasks,” RTSS 2006

Elastic compression of parallel real-time tasks

Updates optimization from Chantem et al. (RTSS 2006)
» Uses utilization definition for parallel real-time tasks
» Allows either period or work to be compressed elastically
» Checks schedulability under Federated Scheduling on m cores

Experiments compared varying a task’s Di vs. its Ci

Comparable tasks compressed to the same utilization
» Temporally vs. computationally elastic tasks reached same point

Equivalence of rate versus workload compression

Total cores available matters for EMCFS

Upper bound (overprovisioning)
» Sum of max cores each task needs:
» All tasks could run in overload

Sufficient cores available (design target)

» Tasks utilizations can be met at each level:

 Lower bound (underprovisioning)
» Below this tasks are dropped at every level:

	Real-time Virtualization, Concurrency Platforms, and Middleware: from Devices to Edge Servers���TECoSA Seminar, Thursday, March 4, 2021 �ITM School, KTH Royal Institute of Technology
	From devices to edge servers
	Part I: a view of cyber-physical scalability
	A spectrum of platform resource granularity
	Requirements and assumptions
	Application: real-time hybrid simulation (RTHS)
	Application: airdrop (and other stress) testing
	Application: catoptric surface redirects light
	Part II: progress so far, and its implications
	Middleware-like parallel real-time systems view
	Parallel synchronous (fork-join) task model
	Example execution trace: strands on cores
	Scalability limitations
	Towards general parallel real-time systems
	Federated scheduling (FS)
	CyberMech parallel RTHS architecture
	Scalable up to a point
	Heavy versus light parallel real-time tasks
	Federated scheduling can be inefficient
	Idea: exploit DAG structure to improve utilization
	New algorithm for scheduling heavy tasks
	Comparison with other federated approaches
	Mixed-criticality improves resource efficiency
	Mixed-criticality federated scheduling
	Selective degradation by criticality
	Slide Number 26
	Slide Number 27
	An expanding model of elasticity
	Benefits of combined elasticity
	Adaptive rescheduling design & implementation
	Adaptation mechanism overheads are acceptable
	Part III: emerging needs and opportunities
	Why elasticity in mixed-criticality PRT systems
	Key idea: above Zi decrease cores Used
	Compress lower-criticality PRT tasks elastically
	Elastic compression strategies
	Why scalable cyber-physical platform frameworks
	Acknowledgements
	Thank you for your interest in this work!��Any questions?
	Backup Slides
	RTHS platform design and implementation
	Semi-federated scheduling
	Comparison: Dinh’s vs other approaches, cont.
	Dinh’s results for heavy tasks only
	Dinh’s results for heavy and light tasks
	Motivation for adaptive RTHS
	Elastic scheduling as constrained optimization
	Elastic compression of parallel real-time tasks
	Equivalence of rate versus workload compression
	Total cores available matters for EMCFS

