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Motivation

Mobile computing: integrate AI-intensive processing

smart city services
virtual/augmented reality applications
...

IoT data processing: periodic data updates

Critical: AI apps energy consumption

Mitigation: offloading + energy harvesting

Introduction Learning Optimal Edge Processing with Offloading and Energy Harvesting 3



Main contributions

Markov model: data freshness versus battery depletion1

processing (-)
energy harvesting (+)
offloading (+)

Optimal policy: threshold structure

Learning:
optimal policy of the single device
optimization of the polling probability in multi-device context

1A. Fox, F. De Pellegrini and E. Altman, “Learning Optimal Edge Processing with
Offloading and Energy Harvesting”, in proc. of ACM MSWIM 2023.
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Single device model

Energy Harvesting

Server Offloading

process

wait

Data reads Device

dynamics: discrete time model

device: reads data batches and processes them

server: polls randomly the device with fixed probability
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Age of Information (AoI)

1 432 5 876 9 121110 t

x t

AoI: metric that captures the freshness of the information processed

time elapsed since last data batch processing

Immediate reward function: AoI-decreasing
Goal: find the policy that maximizes the long-term reward
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Battery level

1 432 5 876 9 121110

1 432 5 876 9 121110

t

t

e t

x t

a
4

=
1

a
6

=
1

harvesting rate {Ht}t∈N: battery recharge at each timestep

processing cost {Ct}t∈N: energy spent for local processing

processing failure: if processing cost is higher than energy available,
we wait until we have a sufficient amount of energy
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Semi Markov decision process (SMDP)

Semi Markov Decision Process:

generalization of MDPs

considers random variable χ: time between subsequent transitions
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SMDP: states and actions

State space: S = {(x , e, z)} where

x ∈ {1, . . . ,M}: current age of information
e ∈ {0, . . . ,B}: current level of energy of the battery
z ∈ {0, 1}: indicates if the server has polled the device considered

Action space: process (1) or wait (0)

if z = 0 then A(s) = {0, 1}
if z = 1 then A(s) = {1}
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SMDP: possible transitions
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Figure: Possible transitions when z = 0, a = 0 (above) and a = 1 (below)
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Figure: Possible transitions when z = 1 and a = 1
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SMDP: sojourn time χ

Device not polled (z = 0):

Wait action (a = 0): χ(s) = 1, only the waiting timeslot

Process locally (a = 1) : χ(s) ≥ 1, consecutive energy harvesting
steps to conclude processing

Device polled (z = 1):

Process remotely (a = 1): χ(s) = 1 + δ, processing timeslot +
roundtrip delay
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SMDP: reward function

Reward components:

utility function: u decreasing function

if x > M, then u(x) = u(M)

disadvantage function: d decreasing function defined only for
arguments smaller than 0

Device not polled (z = 0):

Wait action (a = 0): R((x , e, z = 0), a = 0) = u(x)

Process locally (a = 1): R((x , e, z = 0), a = 1) = u(x) − d(e + h − c)

Device polled (z = 1):

Process remotely (a = 1): R((x , e, z = 1), a = 1) = u(x + δ)
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Value function

Bellman equation:

v(x , e, 0) = max

{
u(x)− pE (e ′ | e, 1)d(e ′) + γ

∑
s′∈S

p(s ′|s, 1)v(s ′),

u(x) + γ
∑
s′∈S

p(s ′|s, 0)v(s ′)

}

v(x , e, 1) = u([x + δ]M) +
∞∑
h=1

pH(h)E
Z
[v(1, [e + h]B , z)]

Monotony of optimal value function:

1 v∗(x , e, z) is non increasing in x

2 v∗(x , e, z) is non decreasing in e
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Structure of the optimal policy

Theorem (AoI thresholds)

Let π be an optimal deterministic policy: for each energy level occupation
0 ≤ e ≤ B there exists an integer threshold 0 ≤ T (e) ≤ M such that
π(e, x , 0) = 1 if and only if x ≥ T (e).
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Structure of the optimal policy

In our experiments we have further observed that the structure of the
policy is a stairway, meaning that T (e) ≥ T (e + 1) ∀e

B

0

3

2

1

1 2 3 4 M

E
ne

rg
y 

le
ve

l

AoI

π(s) = 1

π(s) = 0

Single device model Learning Optimal Edge Processing with Offloading and Energy Harvesting 17



Partial order on states

Natural Partial order: we can sort states as

(x , e + 1, z) � (x , e, z)

(x − 1, e, z) � (x , e, z)

Q-function: Q(s, a) := Eπ [Gt |s0 = s, a0 = a]

Corollary

Fixed a ∈ {0, 1}, then for s = (x , e, z) ∈ S
i. q∗ ((x , e, z), a)≤ q∗ ((x , [e + 1]B , z), a)
ii. q∗ (([x + 1]M , e, z), a)≤ q∗ ((x , e, z), a)

Here: [y ]A := max{0,min{y ,A}}
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Q-learning

Q-function:

Q(s, a) = Ea∼π

[ ∞∑
t=0

γtrt(st , at) | s0 = s, a0 = a

]

Learning rule:

Q(st , at)← (1− αt)Q(st , at) + αt

(
Rt+1 + γmax

a
Q(st+1, a)

)
αt : decaying learning rate
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Ordered Q-learning

Main idea: use the partial order on states and preserve the structure of
the value function

The new learning rule is:{
Q(st , at) = (1− αt)Q(st , at) + αt (rt + γmaxa Q(st+1, a))

Q(s ′, at) = Πst

(
Q(s ′, at)

)
∀s ′ ∈ S

Learning the optimal solution Learning Optimal Edge Processing with Offloading and Energy Harvesting 21



Ordered Q-learning: convergence

Theorem

Consider the Ordered Q-learning algorithm and let γ < 1. Let q∗ be
monotone, i.e., if s1 ≤ s2 according to some order on the states, then
q∗(s1, a) ≤ q∗(s2, a). Then Qt(s, a) converges to q∗(s, a) w.p.1. for every
state s ∈ S and for every action a ∈ A(s).
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Threshold Q-learning
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Partial order considered: (x − 1, e, z) � (x , e, z)
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Threshold Q-learning (larger states)
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Threshold Q-learning (smaller states)
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Stairway Q-learning
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Stairway Q-learning (larger states)
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Stairway Q-learning (smaller states)
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Numerical results
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Multi device model

Server

Device 1

Device N

Device 2

Data reads 1

Data reads N

Data reads 2

pZ,1

pZ,2

pZ,N

π1

π2

πN

H1
t

H2
t

HN
t

N devices: each server-polled with probability pZ ,k

device: takes decision regardless state of other devices

Goal: optimize both pZ ,k (i.e. a polling distribution) and πk ∀k
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Discounted reward function

For each device k: compute the discounted reward function

Rγk ,π(pZ ,k) = Es0∼ρ,a∼π

[ ∞∑
t=0

γtk r(st , at) | S0 = s0

]

Properties of Rγk ,π(pZ ,k): (for fixed policy π)

differentiable

concave (proved only for a simple case)
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Optimization algorithm

Goal: maximize the objective function wrt pZ = (pZ ,1, . . . , pZ ,N)

Rγ(pZ ) =
N∑

k=1

Rγk ,π?k (pZ ,k)

Issues:

the function to maximize is neither concave nor differentiable

finding the optimal policy requires RL (slow operation)
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APPI algorithm

Rπ1 (pZ )

Rπ2 (pZ )

Rπ3 (pZ )

Rπ4 (pZ )

pZ

R

p̃Z
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APPI algorithm

Rπ1 (pZ )

Rπ2 (pZ )

Rπ3 (pZ )

Rπ4 (pZ )

pZ

R

p̃Z

p?Z
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APPI algorithm

APPI: alternates between two stages:

1 Policy learning: we fix the polling probability and learn the optimal
policy of each device using Stairway Q-learning

2 Polling distribution optimization: SPSA algorithm to compute the
approximate gradient of the total reward function Rπ(pZ ,k)

Convergence: guaranteed only to a local maximum
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Numerical results
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Numerical results
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Conclusions

Conclusions:

model minimizing AoI versus battery consumption, while
considering offloading and energy harvesting

structure of the optimal policy

model-based learning method

offloading optimization (state-agnostic case)

Future works:

state-aware offloading (issue of stability)

correlation among devices states
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Discounted reward function

Rπ1 (pZ ,k)

Rπ2 (pZ ,k)

Rπ3 (pZ ,k)

Rπ4 (pZ ,k)

pZ

R
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APPI algorithm: learning the optimal policy

fix the polling probability pZ ,k for each device

we use the learning methods (Stairway Q-learning) for each device
independently

bottleneck of the method
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APPI algorithm: optimizing the polling distribution

We use SPSA algorithm:

computes the approximate gradient of the total reward function,
considering positive and negative increments in the argument of the
function

all the devices are independent to each other

(ĝn)k =
R̂γk ,πk (pZ ,k + cn (∆n)k)− R̂γk ,πk (pZ ,k − cn (∆n)k)

2cn(∆n)k

for fixed policies for each device, it converges to the optimal polling
distribution
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APPI algorithm

Algorithm 1 Alternating Polling and Policy Improvement (APPI)

Require: ε > 0, episode length T
1: initial polling probability pZ ,new

2: while do |pZ ,old − pZ ,new| > ε
3: pZ ,old ← pZ ,new

4: Optimal policy learning: find optimal policy π∗k(pZ ,old) ∀k for episode
length T

5: Polling optimization: find pZ ,new ≥ 0 such that{
pZ ,new = arg maxpZ

∑
k Rγk ,π∗k (pZ ,k,old)(pZ )∑

k pZ ,new = 1

6: end while
7: return pZ ,new
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Random search algorithms
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Value iteration algorithm

Algorithm 2 Value iteration algorithm

Require: ε ≥ 0
Require: γ ∈ (0, 1)
Require: v0 ∈ V
n← 0
while ‖vn+1 − vn‖∞ > ε(1−γ)

2γ do
for each s ∈ S do

vn+1(s)← maxa{r(s, a) + γ
∑

j∈S ps,a(j)vn(j)}
end for

end while
for each s ∈ S do

π?(s) ∈ argmaxa{r(s, a) + γ
∑

j∈S ps,a(j)vn+1(j)}
end for
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Transition probabilities when a = 0

p(s ′|s, 0) =



pZ (z ′ | 0)pH(h)

s = (x , e, 1),

s ′ = ([x + 1]M , e + h, z ′),

e + h < B

pZ (z ′ | 0)
∑∞

h=B−e pH(h)
s = (x , e, 1),

s ′ = ([x + 1]M ,B, z ′)

0 otherwise
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Transition probabilities when a = 1

p(s′ | s, 1) =



pZ (z ′ | 0)

( ∞∑
r=0

Γ1,rpC (e + r − e′)+

+
∞∑
k=2

∞∑
r=k−1

Γk−1,r

∞∑
t=e+r+1

pC (c)pH(e′ + c − r − e)

) s = (x , e, 0),

s′ = (1, e′, z ′),

0 ≤ e′ < B

pZ (z | 0)
∑∞

c=1 pC (c)
∑∞

h=B−e+c pH(h)
s = (x , e, 0),

s′ = (1,B, z ′)

pZ (z ′ | 1)pH(h)

s = (x , e, 1),

s′ = (1, e + h, z ′),

e′ < B

pZ (z ′ | 1)
∑∞

h=B−e pH(h)
s = (x , e, 1),

s′ = (1,B, z ′)

0 otherwise

Learning Optimal Edge Processing with Offloading and Energy Harvesting 52



Average execution time when finishing in e ′

τ(e′) = pZ (1)
B∑

e=0

pE (e)pH(e′ − e)+

+ (1− pZ (0))

( B∑
e=0

pE (e)
∞∑
r=1

Γ1,rpC (e + h1 − e′)+

+
∞∑
k=2

k
B∑

e=0

pE (e)
∞∑
r=1

Γk−1,r

∞∑
c=e+

∑k−1
j=1 hj+1

pC (c)pH(e′ + c −
k−1∑
j=1

hj − e)

)

where

Γk,r = P

 k∑
j=1

hj = r

 , hj i.i.d., hj ∼ pH
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